

mos integrated circuit μ PD75328

4-BIT SINGLE-CHIP MICROCOMPUTER

DESCRIPTION

The μ PD75328 is one of the 75X Series 4-bit single-chip microcomputer, and has a data processing capability comparable to that of an 8-bit microcomputer.

In addition to high-speed operation with 0.95 μ s minimum instruction execution time for the CPU, the μ PD75328 can also process data in 1-, 4-, and 8-bit units. Therefore, as a 4-bit single-chip microcomputer chip having a built-in LCD controller/driver and A/D converter, its data processing capability is the highest in its class in the world.

The μ PD75P328 with one-time PROM, which is replaced with the internal mask ROM for a μ PD75328, is applicable for evaluating systems under development, or for small-scale production of developed systems.

"Detailed functions are described in the following user's manual. Be sure to read it for designing." " μ PD75328 User's Manual: IEM-5045"

FEATURES

- Capable of high-speed operation and variable instruction execution time to power save
 - 0.95 μ s, 1.91 μ s, 15.3 μ s (Main system clock: operating at 4.19 MHz)
 - 122 μs (Subsystem clock: operating at 32.768 kHz)
- 75X architecture comparable to that for an 8-bit microcomputer is employed
- Built-in programmable LCD controller/driver
- Built-in 8-bit resolution A/D converter: 6 channels
- Clock operation at reduced power dissipation: 5 μ A TYP. (operating at 3 V)
- Timer function: 3 channels
- Interrupt functions especially enhanced for applications, such as remote control receiver
- Pull-up resistors can be provided for 35 I/O lines
- Built-in NEC standard serial bus interface (SBI)

APPLICATIONS

Cameras, blood pressure gauges, airconditioners, etc.

ORDERING INFORMATION

Part Number	Package	Quality Grade	
μPD75328GC-xxx-3B9	80-pin plastic QFP (🗆 14mm)	Standard	

Remarks: xxx is ROM code number.

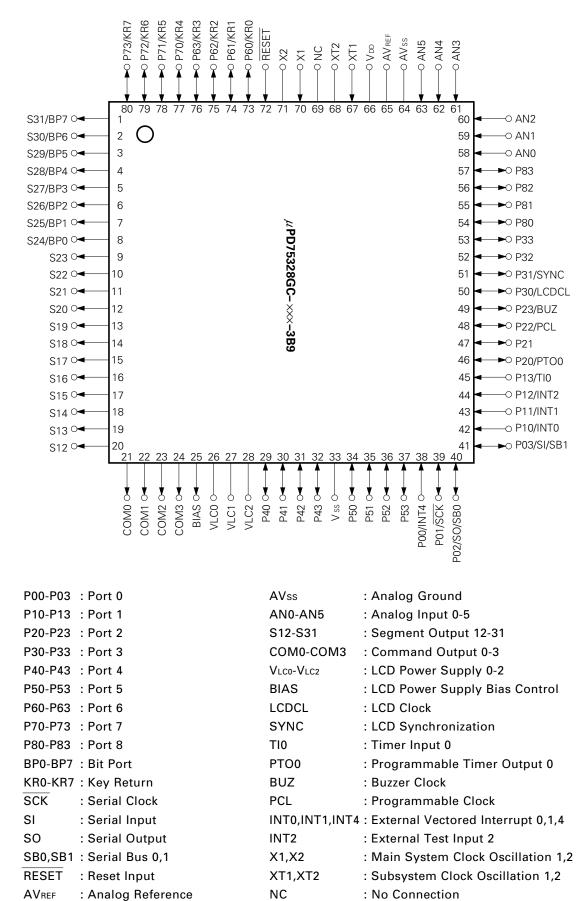
Please refer to "Quality Grade on NEC Semiconductor Devices" (Document Number IEI-1209) published by NEC Corporation to know the specification of quality grade on the devices and its recommended applications.

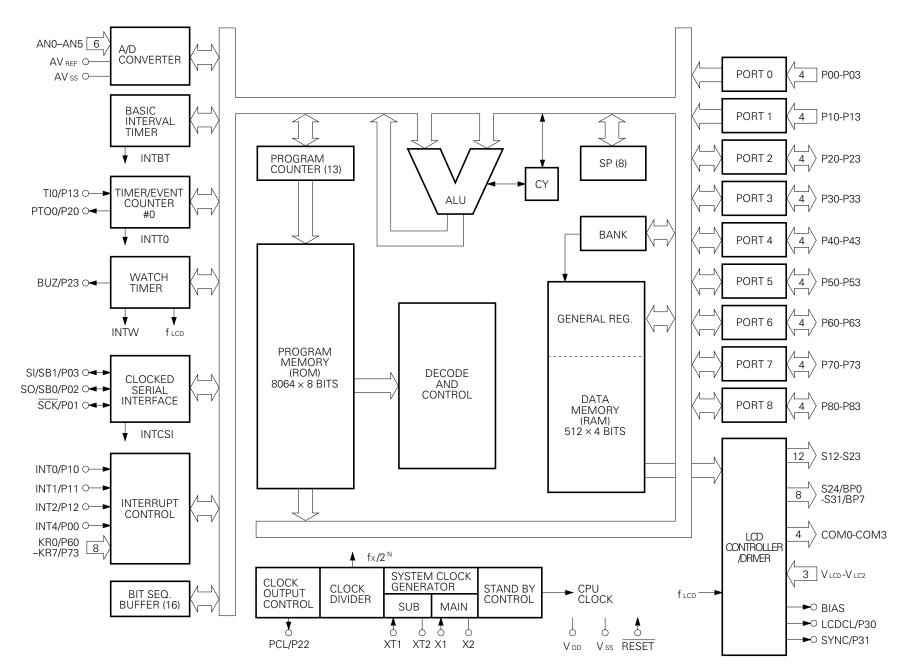
The information in this document is subject to change without notice.

FUNCTIONAL OUTLINE (1/2)

ltem	Item Function					
Number of B Instructions	asic	41				
Instruction Execution Ti						
Internal	ROM	8064 ×	8-bit			
Memory	RAM	512 × 4	-bit			
General-Purp Registers	ose	4-bit m	anip	ulation: 8×4 banks, 8-bit manipula	ation: 4×4 banks	
I/O Line	no nine \		8	CMOS Input pins	Internal pull-up resistor — specification by software	
which also	serve	44	20	CMOS input/output pins	is possible (except P00).	
as LCD driv Excluding t			8	CMOS output pins	Also serve as segment pins	
pins which specifically vided for d LCD.	is pro-		8	N-ch open-drain input/output	Withstand voltage: 10V Internal pull-up resistor specification by mask option is possible.	
LCD Controll Driver	er/	 LCD drive output pins Segment output pins: 20 (CMOS output pins: 8) Common output pins: 4 Capable of driving up to 20 × 4 segments Display output mode: Static, 1/2, 1/3, 1/4 duty 				
A/D Converte	er	•	Oper	tion x 6 channels (successive app ating voltage VDD = 3.5 to 6.0 V conversion speed 40.1 µs (operation		
Timer MHz)		3 chs	Can be used as watchdog timer Clock timer 0.5 second interval generation		r	
			 Count clock source slectable (4.19 MHz/32.768 kHz) Clock advance mode (3.9 ms time interval generation) Buzzer output (2 kHz) 			
Serial Interface		Clock synchronized serial interface • Internal NEC standard serial bus interface (SBI mode) • 3-line serial I/O mode MSB/LSB first selectable • 2-line serial I/O mode				
Bit Sequentia Buffer	al	Special bit manipulation memory: 16 bits				
Clock Output (PCL)		Φ, 524, 262, 65.5 kHz (Main system clock: 4.19 MHz)				
Buzzer Outpu (BUZ)	ıt	2 kHz (with main system clock or subsystem clock operated)				
Vector Interr	upt	External: 3 Internal: 3				
Test Input			External: 1 Internal: 1			

FUNCTIONAL OUTLINE (2/2)


ltem	Function
System Clock Generator	 Main system clock generation ceramic/crystal oscillator; 4.194304 MHz Subsystem clock generation crysal oscillator: 32.768 kHz
Standby	STOP/HALT mode
Operating Temperature Range	-40 to +85°C
Operating Supply Voltage	$V_{DD} = 2.7 \text{ to } 6.0 \text{ V}$
Package	80-pin plastic QFP (□14 mm)


CONTENTS

1.	PIN	CONFIGURATION (TOP VIEW)	6
2.	BLO	CK DIAGRAM	.7
3.	PIN	FUNCTIONS	.8
	3.1	PORT PINS	. 8
	3.2	NON PORT PINS	10
	3.3	PIN INPUT/OUTPUT CIRCUITS 1	12
	3.4	RECOMMENDED PROCESSING OF UNUSED PINS 1	14
	3.5	SELECTION OF MASK OPTION 1	15
	3.6	NOTES ON USING THE P00/INT4, AND RESET PINS 1	15
4.	MEN	IORY CONFIGURATION 1	6
5.	PER	PHERAL HARDWARE FUNCTIONS 1	8
	5.1	PORTS 1	18
	5.2	CLOCK GENERATOR CIRCUIT 1	19
	5.3	CLOCK OUTPUT CIRCUIT	20
	5.4	BASIC INTERVAL TIMER	21
	5.5	WATCH TIMER	22
	5.6	TIMER/EVENT COUNTER	22
	5.7	SERIAL INTERFACE	24
	5.8	LCD CONTROLLER/DRIVER	26
	5.9	A/D CONVERTER	28
	5.10	BIT SEQUENTIAL BUFFER 16 BITS 2	29
6.	INTE	RUPT FUNCTIONS	29
7.	STAN	IDBY FUNCTIONS	;1
8.	RESE	T FUNCTION	:2
9.	INST	RUCTION SET	;4
10.	ELE	CTRICAL SPECIFICATIONS	10
11.	СНА	RACTERISTIC CURVES (REFERENCE VALUE)5	i 3
12.	PAC	KAGE DRAWINGS	9
13.	REC	OMMENDED SOLDERING CONDITIONS	51

APPENDIX A.	COMPARISON OF FEATURES BETWEEN µPD75328 AND µPD75308	62
APPENDIX B.	DEVELOPMENT TOOLS	63
APPENDIX C.	RELATED DOCUMENTS	64

1. PIN CONFIGURATION (Top View)

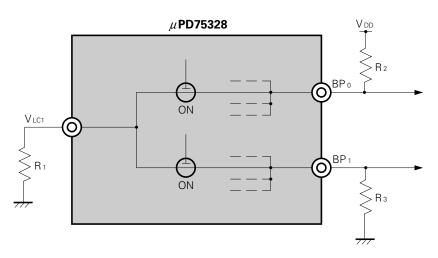
3. PIN FUNCTIONS

3.1 PORT PINS (1/2)

Pin Name	Input/Output	Also Served As	Function	8-Bit I/O	When Reset	Input/ Output Circuit TYPE* ¹
P00	Input	INT4			Input -	B
P01	Input/ Output	SCK	4-bit input port (PORT0) Pull-up resistors can be specified in 3-bit			F-A
P02	Input/ Output	SO/SB0	units for the P01 to P03 pins by software.	х		(F)-B
P03	Input/ Output	SO/SB1				M-C
P10		INT0	With noise elimination function			
P11	Input	INT1	4-bit input port (PORT1)	x	Input	
P12	input	INT2	Internal pull-up resistors can be specified in 4-bit units by software.			B-C
P13		TI0				
P20		PTO0		v	Input	E-B
P21	Input/	_	4-bit input/output port (PORT2) Internal pull-up resistors can be			
P22		PCL	specified in 4-bit units by software.	X		
P23		BUZ				
P30*2		LCDCL	Programmable 4-bit input/output port		Input	E-B
P31*2	Input/	SYNC	(PORT3) This port can be specified for input/	v		
P32*2	Output	_	output in bit units. Internal pull-up resistors can be	Х		
P33*2		_	specified in 4-bit units by software.			
P40-43*2	Input/ Output	_	N-ch open-drain 4-bit input/output port (PORT4) Internal pull-up resistors can be specified in bit units. (mask option) Resistive voltage is 10 V in the open- drain mode.		High level (with internal pull-up resistor) or high imped- ance	М
P50-53*2	Input/ Output	_	N-ch open-drain 4-bit input/output port (PORT5) Internal pull-up resistors can be specified in bit units. (mask option) Resistive voltage is 10 V in the open- drain mode.	0	High level (with internal pull-up resistor) or high imped- ance	Μ

*1: Circles indicate Schmitt trigger inputs.

2: Can directly drive LED.


3.1 PORT PINS (2/2)

Pin Name	Input/Output	Also Served As	Function	8-Bit I/O	When Reset	Input/ Output Circuit TYPE*1
P60		KR0	Programmable 4-bit input/output port			(F)-A
P61	Input/	KR1	(PORT6) This port can be specified for input/		Input	
P62	Output	KR2	output in bit units. Internal pull-up resistors can be			
P63		KR3	specified in 4-bit units by software.	0		
P70		KR4				
P71	Input/	KR5	4-bit input/output port (PORT7) Internal pull-up resistors can be		Input	(F)-A
P72	Output	KR6	specified in 4-bit units by software.			
P73		KR7				
P80					Input	
P81	Input/	Input/	4-bit input/output port (PORT8)			
P82	Output	_	Internal pull-up resistors can be specified in 4-bit units by software.	x		E-B
P83						
BP0		S24				
BP1	Output	S25				
BP2	Output	S26			*2	G-C
BP3		S27	1-bit output port (BIT PORT)	x		
BP4		S28	Shared with a segment output pin.			
BP5	Output	S29				
BP6	Output	S30				
BP7		S31				

*1: Circles indicate schmidt trigger inputs.

2: For BP0-7, VLc1 indicated below are selected as the input source. However, the output level is changed depending on BP0-7 and the VLc1 external circuits.

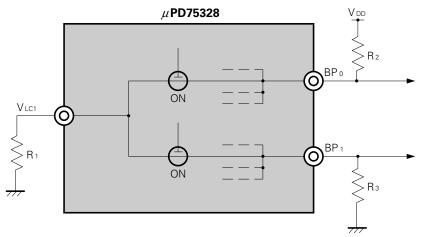
Example: Since BP0-7 are connected to each other within the μ PD75328 as shown in the diagram below, the output level of BP0-7 depends on the sizes of R₁, R₂ and R₃.

3.2 NON PORT PINS

Pin Name	Input/Output	Also Served As	Functor	1	When Reset	Input/ Output Circuit TYPE*1
TI0	Input	P13	Timer/event counter externa	l event pulse Input	Input	B-C
PTO0	Output	P20	Timer/event counter output		Input	E-B
PCL	Input/ Output	P22	Clock output		Input	E-B
BUZ	Input/ Output	P23	Fixed frequency output (for ming the system clock)	buzzer or for trim-	Input	E-B
SCK	Input/ Output	P01	Serial clock input/output		Input	(F)-A
SO/SB0	Input/ Output	P02	Serial data output Serial bus input/output		Input	(F)-В
SI/SB1	Input/ Output	P03	Serial data input Serial bus input/output		Input	М -с
INT4	Input	P00	Edge detection vector interrorising and falling edge detec		Input	B
INT0	laset	P10	Edge detection vector	Clock synchronous	Input	
INT1	Input	P11	edge can be selected)	interrupt input (detection edge can be selected) Asynchronous		B-C
INT2	Input	P12	Edge detection testable input (rising edge detection)	Asynchronous	Input	B-C
KR0-KR3	Input/ Output	P60-P63	Parallel falling edge detection testable input/output		Input	(F-A
KR4-KR7	Input/ Output	P70-P73	Parallel falling edge detection testable input/output		Input	(F)-A
S12-S23	Output	—	Segment signal output		*4	G-A
S24-S31	Output	BP0-7	Segment signal output		*4	G-C
COM0- COM3	Output	_	Common signal output		*4	G-B
VLC0-VLC2	_	_	LCD drive power Step-down resistor network	(mask option)	_	
BIAS	Output	_	External expanded driver for	External expanded driver for disconnect output		
LCDCL*3	Input/ Output	P30	Externally expanded driver for clock output		Input	E-B
SYNC*3	Input/ Output	P31	Externally expanded driver sync clock output		Input	E-B
AN0-AN5	Input	_	6-bit analog input for A/D converter		Input	Y
AVREF	Input	_	A/D converter reference volt	age input	Input	Z
AVss	_	_	GND potential for A/D conve input. Connected to Vss.	erter reference voltage	_	_

(cont'd)

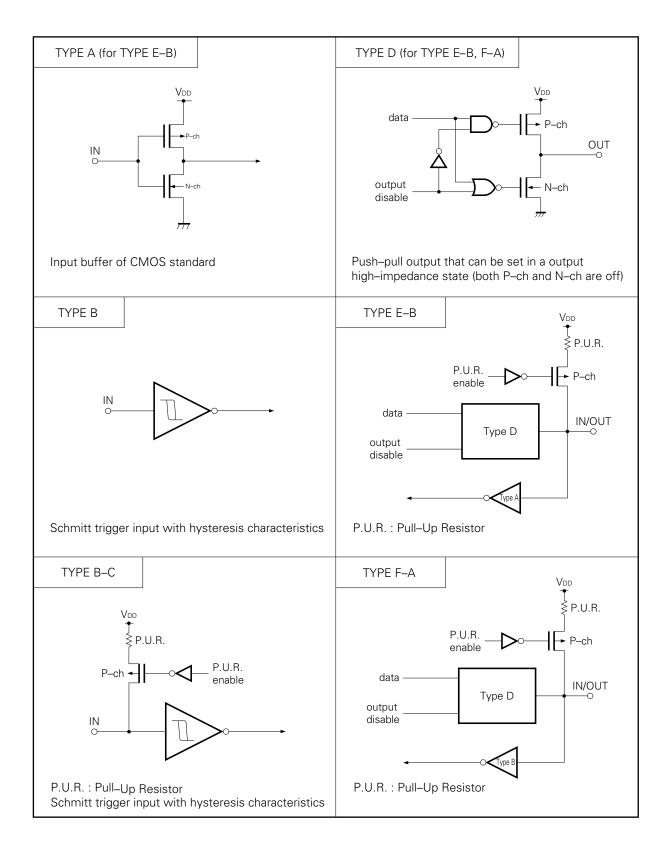
Pin Name	Input/Output	Also Served As	Function	When Reset	Input/ Output Circuit TYPE*1
X1,X2	_	_	To connect the crystal/ceramic oscillator to the main system clock generator. When inputting the external clock, input the external clock to pin X1, and the reverse phase of the external clock to pin X2.	_	Ι
XT1, XT2	_	_	To connect the crystal oscillator to the subsystem clock generator. When the external clock is used, pin XT1 inputs the external clock. In this case, pin XT2 must be left open. Pin XT1 can be used as a 1-bit input pin.	_	
RESET	Input	_	System reset input	_	B
NC *2		_	No connection		_
Vdd		_	Positive power supply	_	_
Vss	_	_	GND	_	_

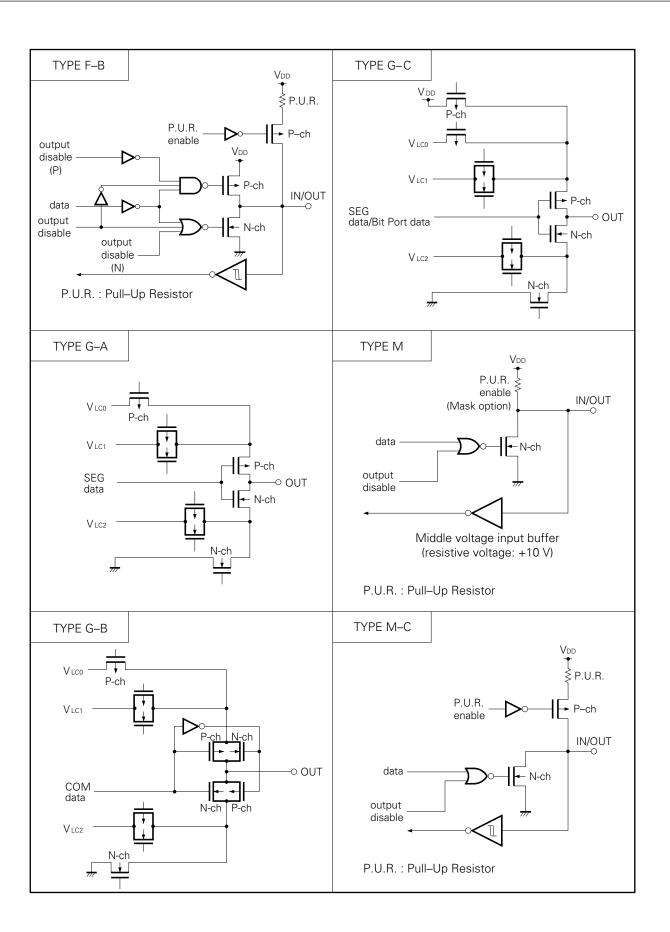

*1: Circles indicate schmidt trigger inputs.

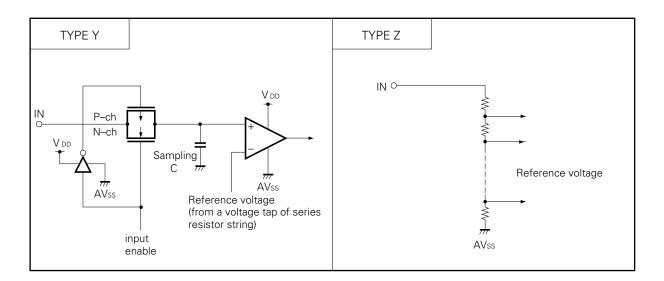
- 2: When sharing the printed circut board with the μ PD75P328, the NC pin must be connected to V_{DD}.
- 3: These pins are provided for future system expansion. At present, these pins are used only as pins P30 and P31.
- 4: For these display output, VLCX indicated below are selected as the input source.

S12 to S31: VLC1, COM0 to COM2: VLC2, COM3: VLC0

However, display output level varies depending on the particular display output and V_{LCX} external circuit.


Example: Since BP0-7 are connected to each other within the μ PD75328 as shown in the diagram below, the output level of BP0-7 depends on the size of R₁, R₂ and R₃.




5: Step-down resistor network provided : Low level Step-down resistor network not provided : High impedance

3.3 PIN INPUT/OUTPUT CIRCUITS

The following shows a simplified input/output circuit diagram for each pin of the μ PD75328.

3.4 RECOMMENDED PROCESSING OF UNUSED PINS

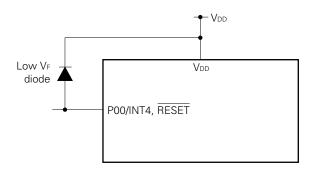
Pin	Recommended Connections		
P00/INT4	Connect to Vss		
P01/SCK			
P02/SO/SB0	Connect to Vss or VDD		
P03/SI/SB1			
P10/INT0-P12/INT2	0		
P13/TI0	Connect to Vss		
P20/PTO0			
P21			
P22/PCL			
P23/BUZ			
P30-P33	Input : Connect to Vss or VDD		
P40-P43	Output: Open		
P50-P53			
P60-P63			
P70-P73			
P80-P83			
S12-S23			
S24/BP0-S31/BP7	Open		
COM0-COM3			
VLC0-VLC2	Connect to Vss		
BIAS	Connect to Vss only when All of the VLC0-VLC2		
	pins are unused, otherwise, open.		
XT1	Connect to Vss or VDD		
XT2	Open		
AVREF	Connect to Vss		
AVss	Connect to Vss		
AN0-AN5	Connect to Vss or VDD		

3.5 SELECTION OF MASK OPTION

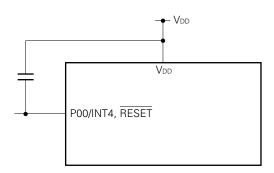
The following mask operations are available and can be specified for each pin.

Pin	Mask	Remarks	
P40-P43, P50-P53	With pull-up resistor	Without pull-up resistor	Specification in bit units
VLC0-VLC2 BIAS	With voltage dividing resistor for LCD drive power source	Without voltage dividing resistor for LCD drive power source	Specification in 4-bit units
XT1, XT2	With feed back resistor (when using the subsystem clock)	Without feed back resistor (when using the subsystem clock)	

3.6 NOTES ON USING THE P00/INT4, AND RESET PINS


In addition to the functions described in Sections 3.1 and 3.2, an exclusive function for setting the test mode, in which the internal fuctions of the μ PD75328 are tested, is provided to the P00/INT4 and RESET pins.

If a voltage exceeding V_{DD} is applied to either of these pins, the μ PD75328 is put into test mode. Therefore, even when the μ PD75328 is in normal operation, if noise exceeding the V_{DD} is input into any of these pins, the μ PD75328 will enter the test mode, and this will cause problems for normal operation.


As an example, if the wiring to the P00/INT4 pin or the RESET pin is long, stray noise may be picked up and the above montioned problem may occur.

Therefore, all wiring to these pins must be made short enough to not pick up stray noise. If noise cannot be avoided, suppress the noise using a capacitor or diode as shown in the figure below.

 Connect a diode having a low V_F across P00/INT4 and RESET, and V_{DD}.

• Connect a capacitor across P00/INT4 and $$\overline{\sf RESET}$$, and $V_{\sf DD}.$

4. MEMORY CONFIGURATION

- Program memory (ROM) ... 8064 words \times 8 bits
 - 0000H, 0001H: Vector table to which address from which program is started is written after reset
 - 0002H-000BH : Vector table to which address from which program is started is written after interrupt
 - 0020H-007FH : Table area referenced by GETI instruction
- Data memory
 - + Data area 512 words \times 4 bits (000H–1FFH)
 - Peripheral hardware area 128 words × 4 bits (F80H–FFFH)

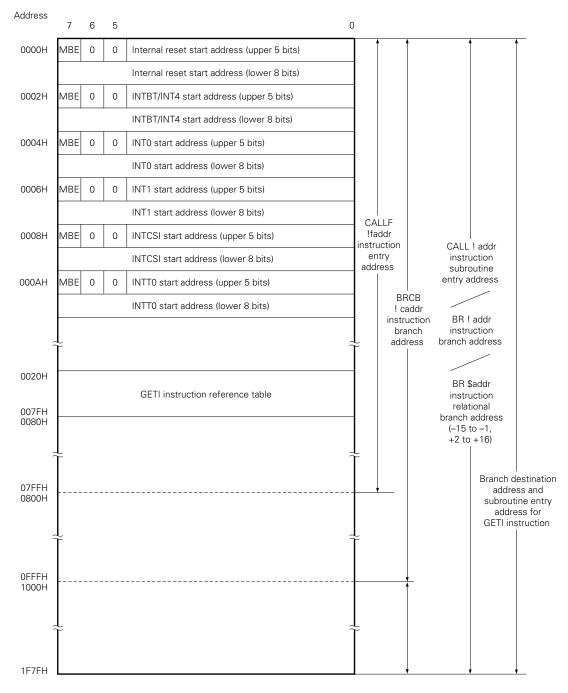


Fig. 4-1 Program Memory Map

•		General-purpose register area	000H 007H	(8 × 4)	
Data area (Static RAM (512 x 4))	Stack	< area	008H	256 × 4 (248 × 4)	Bank 0
		•	0FFH		
			100H	256 × 4 (236 × 4)	
			1EBH		Bank 1
		Display data memory	1ECH 1FFH	(20 × 4)	,
				Not provided	
			F80H		
Peripheral hardware	area			128 x 4	Bank 15
			FFFH		

Fig. 4-2 Data Memory Map

5. PERIPHERAL HARDWARE FUNCTIONS

5.1 PORTS

I/O ports are classified into the following 4 kinds:

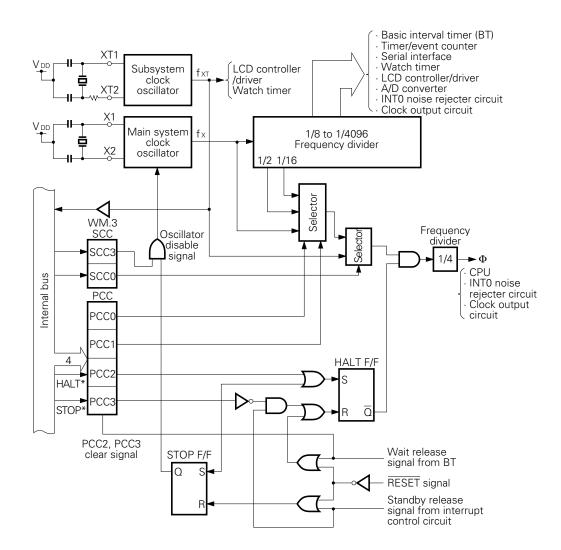
- CMOS input (PORT0, 1) : 8
- CMOS input/output (PORT2, 3, 6, 7, and 8) : 20
- CMOS output (BP0-BP7) : 8
- N-ch open-drain input/output (PORT4, 5) : 8

```
Total
```

Table	5-1	Port	Function
-------	-----	------	----------

: 44

Port Name	Function	Operation and Feature	Remarks
PORT0		Can be always read or tested regardless of	Multiplexed with INT4, SCK, SO/SB0, and SI/SB1
PORT1	4-bit input	operation mode of multiplexed pin.	Multiplexed with INT0- INT2 and TI0
PORT2		Can be set in input or output mode in 4-bit units.	Multiplexed with PTO0, PCL, and BUZ
PORT7		Ports 6 and 7 are used in pairs to input/output data in 8-bit units.	Multiplexed with KR4-KR7
PORT8	4-bit Input/Output		_
PORT3		Can be set in input or output mode in 1-bit units.	Multiplexed with LCDCL and SYNC
PORT6			Multiplexed with KR0-KR3
PORT4 * PORT5 *	4-bit Input/Output (N-ch open-drain, 10 V)	Can be set in input or output mode in 4-bit units. Ports 4 and 5 are used in pairs to input/output data in 8-bit units.	Can be connected to a pull-up resistor in 1-bit units by using mask option.
BP0-BP7	1-bit output	Output data in 1-bit units. Can be used as LCD drive segment output pins S24-S31 through software.	_


*: Can directly drive LED.

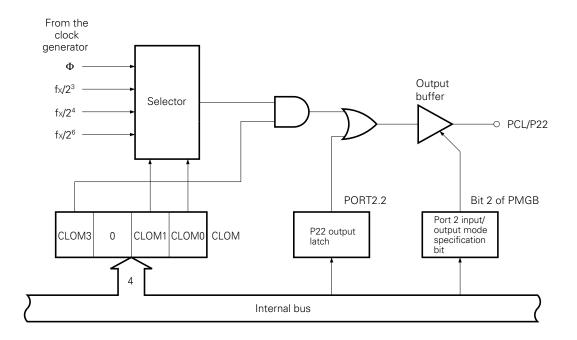
5.2 CLOCK GENERATOR CIRCUIT

The operation of the clock generator circuit is determined by the processor clock control regiser (PPC) and system clock control register (SCC).

This circuit can generate two types of clocks: main system clock and subsystem clock. In addition, it can also change the instruction execution time.

- 0.95 μs, 1.91 μs, 15.3 μs (main system clock: 4.19 MHz)
- 122 μs (subsystem clock: 32.768 kHz)

*: instruction execution.

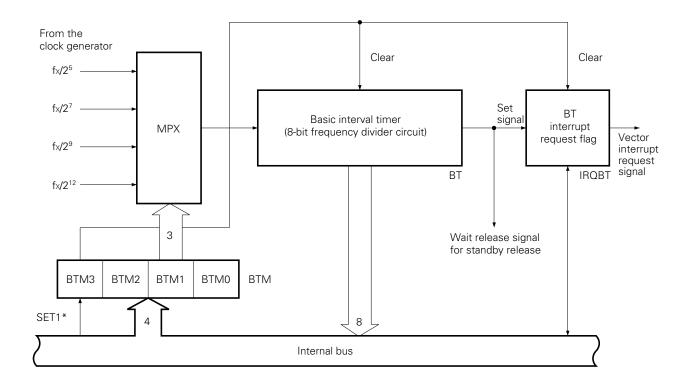

Remarks 1: fx = Main system clock frequency

- 2: fxT = Subsystem clock frequency
- 3: Φ = CPU clock
- 4: PCC: Processor clock control register
- 5: SCC: System clock control register
- 6: One clock cysle (t_{CY}) of Φ is one machine cycle of an instruction. For t_{CY} , refer to AC characteristics in 10. ELECTRICAL SPECIFICATIONS.

Fig. 5-1 Clock Generator Block Diagram

5.3 CLOCK OUTPUT CIRCUIT

The clock output circuit outputs clock pulse from the P22/PCL pin. This clock pulse is used for the remote control output, peripheral LSIs, etc.


Fig. 5-2 Clock Output Circuit Configuration

Remarks: A measures to prevent outputting narrow width pulse when selecting clock output enable/disable is taken.

5.4 BASIC INTERVAL TIMER

The μ PD75328 is provided with the 8-bit basic interval timer. The basic interval timer has these functions:

- Interval timer operation which generates a reference time interrupt
- Watchdog timer application which detects a program runaway
- Selects the wait time for releasing the standby mode and counts the wait time
- Reads out the count value

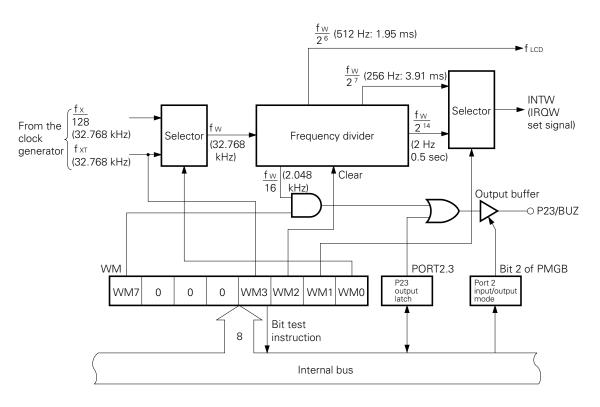

Remarks : *: Instruction execution

Fig. 5-3 Basic Interval Timer Configuration

5.5 WATCH TIMER

The μ PD75328 has a built-in 1-ch watch timer. The watch timer is configured as shown in Fig. 5-4.

- Sets the test flag (IRQW) with 0.5 sec interval. The standby mode can be released by IRQW.
- 0.5 second interval can be generated either from the main system clock or subsystem clock.
- Time interval can be advanced to 128 times faster (3.91 ms) by setting the fast mode. This is convenient for program debugging, test, etc.
- Fixed frequency (2.048 kHz) can be output to the P23/BUZ pin. This can be used for beep and system clock frequency trimming.
- The frequency divider circuit can be cleared so that zero second watch start is possible.

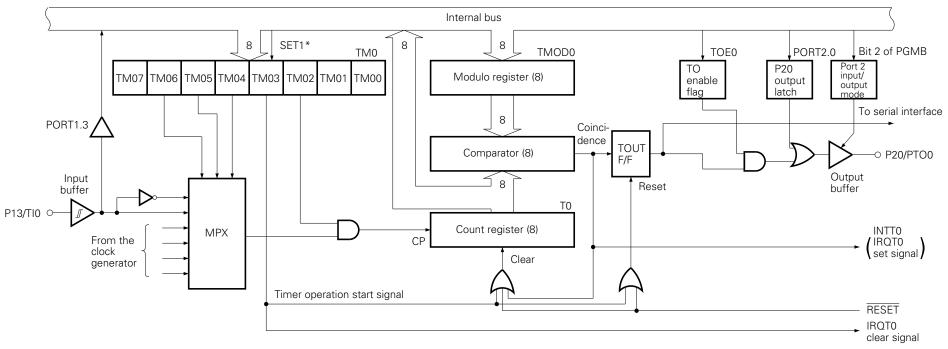
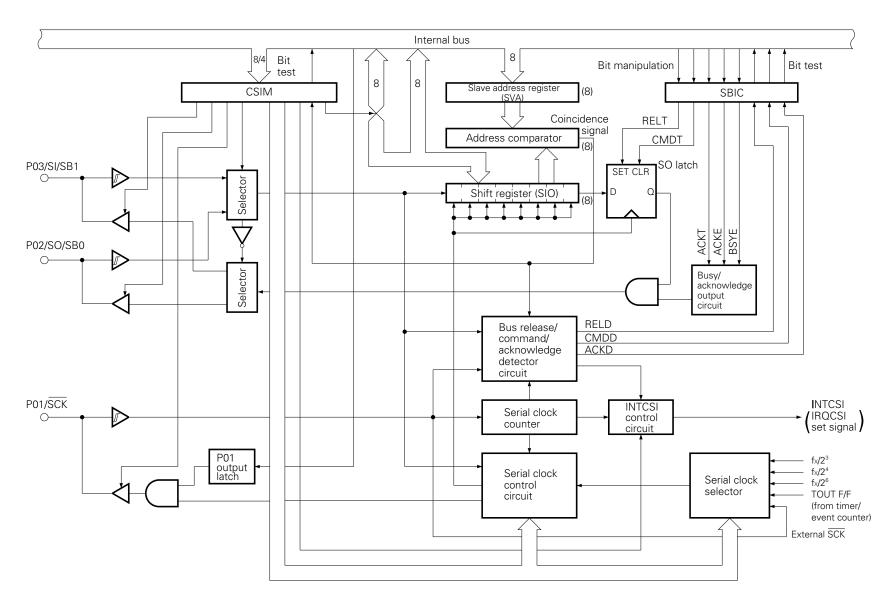

() is for fx = 4.194304 MHz, fxT = 32.768 kHz.

Fig. 5-4 Watch Timer Block Diagram

5.6 TIMER/EVENT COUNTER

The μ PD75328 has a built-in 1-ch timer/event counter. The timer/even counter has these functions:

- Programmable interval timer operation
- Outputs square-wave signal of an arbitrary frequency to the PTO0 pin.
- Event counter operation
- Divides the TIO pin input in N and outputs to the PTOO pin (frequency divider operation).
- Supplies serial shift clock to the serial interface circuit.
- Count condition read out function


*:Instruction execution

5.7 SERIAL INTERFACE

The μ PD75328 is equipped with an 8-bit clocked serial interface that operates in the following four modes:

- Operation stop mode
- Three-line serial I/O mode
- Two-line serial I/O mode
- SBI mode (serial bus interface mode)

5.8 LCD CONTROLLER/DRIVER

The μ PD75328 is provided with a display controller that generates segment and common signals and a segment driver and a common driver that can directly drive an LCD panel. These LCD controller and drivers have the following functions:

- Generate segment and common signals by automatically reading the display data memory by means of DMA
- Five display modes selectable
 - Static
 - 1/2 duty (divided by 2), 1/2 bias
 - 1/3 duty (divided by 3), 1/2 bias
 - 1/3 duty (divided by 3), 1/3 bias
 - 1/4 duty (divided by 4), 1/3 bias
- Four types of frame frequencies selectable in each display mode
- Up to 20 segment signals (S12-S31) and four common signals (COM0-COM3) can be output.
- Four segment signal output pins (S24-S27, S28-S31) can be used as an output port (BP0-BP3, BP4-BP7).
- Dividing resistor for LCD driving power source can be provided (by mask option).
 - All bias modes and LCD drive voltages can be used.
- Current flowing to dividing resistor can be cut when display is off.
- Display data memory not used for display can be used as ordinary data memory.
- Can also operate on subsystem clock.

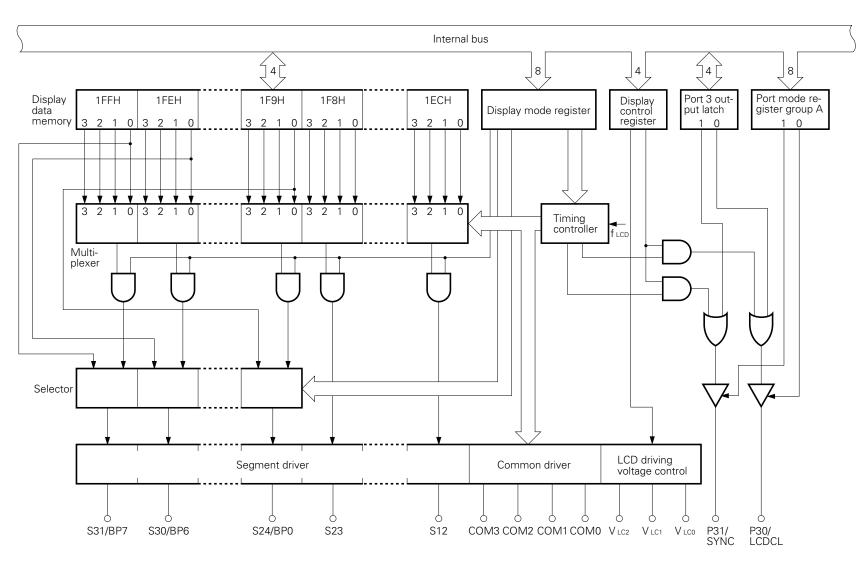


Fig. 5-7 LCD Controller/Driver Block Diagram

27

5.9 A/D CONVERTER

The μ PD75328 is provided with an 8-bit resolution analog-to-digital (A/D) converter with six channels of analog inputs (AN0-AN5).

This A/D converter is of a successive approximation type.

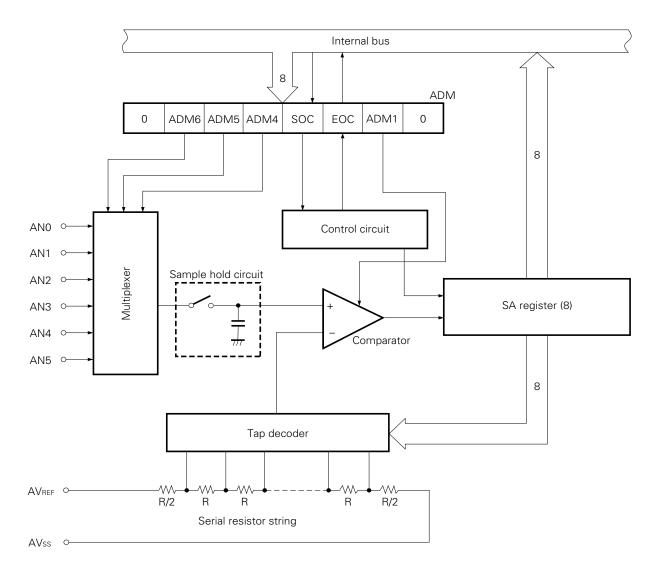
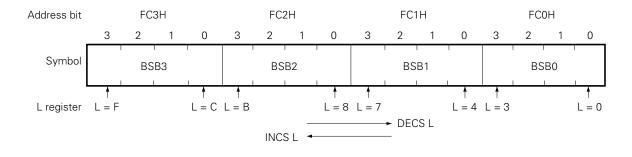
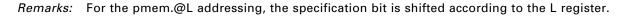
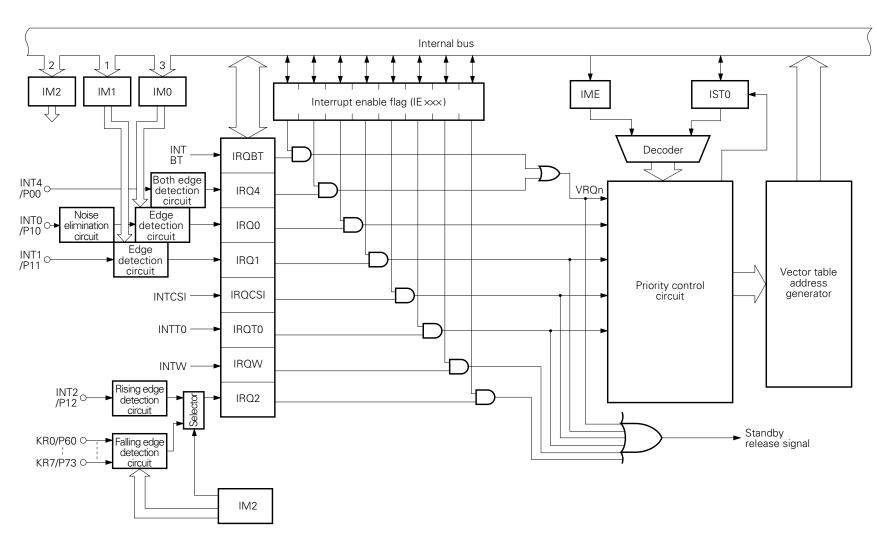




Fig. 5-8 Block Diagram of A/D Converter

5.10 BIT SEQUENTIAL BUFFER 16 BITS

The bit sequential buffer is a data memory specifically provided for bit manipulation. With this buffer, addresses and bit specifications can be sequentially up-dated in bit manipulation operation. Therefore, this buffer is very useful for processing long data in bit units.


Fig. 5-9 Bit Sequential Buffer Format

6. INTERRUPT FUNCTIONS

The μ PD75328 has 6 different interrupt sources and multiplexed interrupt with priority order. In addition to that, the μ PD75328 is also provided with two types of test sources, of which INT2 has two types of edge detection testable inputs.

The interrupt control circuit of the μ PD75328 has these functions:

- Hardware controlled vector interrupt function which can control whether or not to accept an interrupt by using the interrupt flag (IExxx) and interrupt master enable flag (IME).
- The interrupt start address can be arbitrarily set.
- Interrupt request flag (IRQxxx) test function (an interrupt generation can be confirmed by means of software).
- Standby mode release (Interrupts to be released can be selected by the interrupt enable flag).

µ**PD75328**

7. STANDBY FUNCTIONS

The μ PD75328 has two different standby modes (STOP mode and HALT mode) to reduce the power consumption while waiting for program execution.

ltem	Mode	STOP Mode	HALT Mode
Setting In	struction	STOP instrtuction	HALT instruction
System C	lock for Setting	Can be set only when operating on the main system clock	Can be set either with the main system clock or the subsystem clock
Operation Status	Clock Generator	Only the main system clock stops its operation.	Only the CPU clock Φ stops its operation. (oscillation continues)
	Basic Interval Timer	No operation	Can operate only when main system clock oscillates (Sets IRQBT at reference time interval)
	Serial Interface	Can operate only when the external SCK input is selected for the serial clock	Can operate only when main system clock oscillates, or when external SCK input is selected as serial clock
	Timer/Event Counter	Can operate only when the TI0 pin input is selected for the count clock	Can operate only when main system clock oscillates, or when Tl0 pin input is selected as count clock
	Watch Timer	Can operate when fxr is selected as the count clock	Can operate
	LCD controller	Can operate only when fxT is selected as LCDCL	Can operate
	A/D Convertor	No operation	Can operate only when the main system clock is operating.
	External Interrupt	INT1, INT2, and INT4 can operate. Only INT0 can not operate.	
	CPU	No operation	
Release Signal		An interrupt request signal from a hardware whose operation is enabled by the interrupt enable flag or the RESET signal input	An interrupt request signal from a hardware whose operation is enabled by the interrupt enable flag or the RESET signal input

Table 7-1 Each Status in Standby Mode

8. RESET FUNCTION

When the $\overrightarrow{\text{RESET}}$ signal is input, the μ PD75328 is reset and each hardware is initialized as indicated in Table 8-1. Fig. 8-1 shows the reset operation timing.

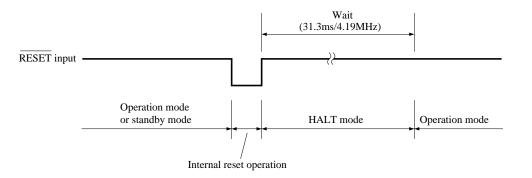


Fig. 8-1 Reset Operation by RESET Input

Table 8-1	Status of Each	Hardware	after Reset (1/2)	
		i i i a i a i a i a		

Hardware		Hardware	RESET Input in Standby Mode	RESET Input during Operation
Progra	of address 0000H of the program of address 0000H of the program memory are set to PC12-8, and memory are set to PC12-		The contents of the lower 5 bits of address 0000H of the program memory are set to PC12-8, and the contents of address 0001H are set to PC7-0.	
PSW	Carry I	Flag (CY)	Retained	Undefined
	Skip F	lag (SK0-2)	0	0
	Interru	pt Status Flag (IST0)	0	0
	Bank Enable Flag (MBE)		The contents of bit 7 of address 0000H of the program memory are set to MBE.	The contents of bit 7 of address 0000H of the program memory are set to MBE.
Stack	Pointer	(SP)	Undefined	Undefined
Data N	Memory	(RAM)	Retained *1	Undefined
	al-Purpo H, L, D,	se Register E, B, C)	Retained	Undefined
Bank S	Selectior	n Register (MBS)	0	0
		Counter (BT)	Undefined	Undefined
Timer		Mode Register (BTM)	0	0
	/Event	Counter (T0)	0	0
Counter		Module Register (TMOD0)	FFH	FFH
		Mode Register (TM0)	0	0
		TOE0, TOUT F/F	0, 0	0, 0
Watch	Timer	Mode Register (WM)	0	0

	Hardware	RESET Input in Standby Mode	RESET Input during Operation
Serial	Shift Register (SIO)	Retained	Undefined
Interface	Operation Mode Register (CSIM)	0	0
	SBI Control Register (SBIC)	0	0
	Slave Address Register (SVA)	Retained	Undefined
Clock Generator,	Processor Clock Control Register (PCC)	0	0
Clock Output Circuit	System Clock Control Register (SCC)	0	0
	Clock Output Mode Register (CLOM)	0	0
LCD Controller	Display Mode Register (LCMD)	0	0
	Display Control Register (LCDC)	0	0
A/D Converter	Mode Regiseter (ADM), EOC	04H (EOC = 1)	04H (EOC = 1)
	SA Register	7FH	7FH
Interrupt Function	Interrupt Request Flag (IRQxxx)	Reset (0)	Reset (0)
	Interrupt Enable Flag (IExxx)	0	0
	Interrupt Master Enable Flag (IME)	0	0
	INT0, INT1, INT2 Mode Registers (IM0, 1, 2)	0, 0, 0	0, 0, 0
Digital Port	Output Buffer	Off	Off
	Output Latch	Clear (0)	Clear (0)
	Input/Output Mode Register (PMGA, B, C)	0	0
	Pull-Up Resistor Specification Register (POGA, B)	0	0
Pin States	P00-P03, P10-P13, P20-P23, P30-P33, P60-P63, P70-P73, P80-P83	Input	Input
	P40-P43, P50-P53	 Internal pull-up resistors High level Open drain High impedance 	Same as at left
	S12-S23, COM0-COM3	*2	*2
	BIAS	 Internal step-down resistors Low level External step-down resistors 	Same as at left
		High impedance	
Bit Sequential	Buffer (BSB0-3)	Retained	Specified

Table 8-1	Status of Each	Hardware	after	Reset	(2/2)
-----------	----------------	----------	-------	-------	-------

- *1: Data of address 0F8H to 0FDH of the data memory becomes undefined when a RESET signal is input.
- 2: Select VLCX as shown below as the input source for each display output.

 S12-31 :
 VLC1

 COM0-2 :
 VLC2

 COM3 :
 VLC0

NEC

However, the level of each display output varies according to the display output and the external circuit for V_{LCX} .

9. INSTRUCTION SET

(1) Operand representation and description

Describe one or more operands in the operand field of each instruction according to the operand representation and description methods of the instruction (for details, refer to RA75X Assembler Package User's Manual - Language (EEU-730)). With some instructions, only one operand should be selected from several operands. The uppercase characters, +, and – are keywords and must be described as is.

Representation	Description
reg	X, A, B, C, D, E, H, L
reg1	X, B, C, D, E, H, L
rp	XA, BC, DE, HL
rp1	BC, DE, HL
rp2	BC, DE
rpa	HL, DE, DL
rpa1	DE, DL
n4	4-bit immediate data or label
n8	8-bit immediate data or label
mem	8-bit immediate data or label
bit	2-bit immediate data or label
fmem	FB0H to FBFH,FF0H to FFFH immediate data or label
pmem	FC0H to FFFH immediate data or label
addr	0000H to 1F7FH immediate data or label
caddr	12-bit immediate data or label
faddr	11-bit immediate data or label
taddr	20H to 7FH immediate data (where bit0 = 0) or label
PORTn	PORT0 to PORT8
IExxx	IEBT, IECSI, IET0, IE0, IE1, IE2, IE4, IEW
MBn	MB0, MB1, MB15

Describe an appropriate numeric value or label as immediate data.

(2) Legend of operation field

- A : A register; 4-bit accumulator
- B : B register; 4-bit accumulator
- C : C register; 4-bit accumulator
- D : D register; 4-bit accumulator
- E : E register; 4-bit accumulator
- H : H register; 4-bit accumulator
- L : L register; 4-bit accumulator
- X : X register; 4-bit accumulator
- XA : Register pair (XA); 8-bit accumulator
- BC : Register pair (BC); 8-bit accumulator
- DE : Register pair (DE); 8-bit accumulator
- HL : Register pair (HL); 8-bit accumulator
- PC : Program counter
- SP : Stack pointer
- CY : Carry flag; or bit accumulator
- PSW : Program status word
- MBE : Memory bank enable flag
- PORTn : Port n (n = 0 to 8)
- IME : Interrupt mask enable flag
- IExxx : Interrupt enable flag
- MBS : Memory bank selector register
- PCC : Processor clock control register
- · : Delimiter of address and bit
- (xx) : Contents addressed by xx
- xxH : Hexadecimal data

(3) Symbols in addressing area field

*1	MB = MBE · MBS (MBS = 0, 1, 15)	
*2	MB = 0	
*3	MBE = 0 : MB = 0 (00H-7FH) MB = 15 (80H-FFH) MBE = 1 : MB = MBS (MBS = 0, 1, 15)	Data memory addressing
*4	MB = 15, fmem = FB0H-FBFH, FF0H-FFFH	
*5	MB = 15, pmem = FC0H-FFFH	↓
*6	addr = 000H-1F7FH	t t
*7	addr = (Current PC) - 15 to (Current PC) - 1 (Current PC) + 2 to (Current PC) + 16	Program
*8	caddr = $0000H-0FFFH$ (PC ₁₂ = 0) or 1000H-1F7FH (PC ₁₂ = 1)	addressing
*9	faddr = 0000H-07FFH	
*10	taddr = 0020H-007FH	

Remarks 1: MB indicates memory bank that can be accessed.

- 2: In *2, MB = 0 regardless of MBE and MBS.
- 3: In *4 and *5, MB = 15 regardless of MBE and MBS.
- 4: *6 to *10 indicate areas that can be addressed.

(4) Machine cycle field

In this field, S indicates the number of machine cycles required when an instruction having a skip function skips. The value of S varies as follows:

٠	When no instruction is skipped	S = 0
٠	When 1-byte or 2-byte instruction is skipped	S = 1

• When 3-byte instruction (BR ! addr or CALL ! addr) is skipped S = 2

Note : The GETI instruction is skipped in one machine cycle.

One machine cycle equals to one cycle of the CPU clock Φ , (=tcy), and can be changed in three steps depending on the setting of the processor clock control register (PCC).

Instruc- tions	Mne- monics	Operand	Bytes	Ma- chine Cyc- Ies	Operation	Ad- dress- ing Area	Skip Conditions
Transfer	MOV	A, #n4	1	1	A ← n4		String effect A
		reg1, #n4	2	2	reg1 ← n4		
		XA, #n8	2	2	XA ← n8		String effect A
		HL, #n8	2	2	HL ← n8		String effect B
		rp2, #n8	2	2	rp2 ← n8		
		A, @HL	1	1	$A \leftarrow (HL)$	*1	
		A, @rpa1	1	1	$A \leftarrow (rpa1)$	*2	
		XA, @HL	2	2	$XA \leftarrow (HL)$	*1	
		@HL, A	1	1	$(HL) \leftarrow A$	*1	
		@HL, XA	2	2	$(HL) \leftarrow XA$	*1	
		A,mem	2	2	A ← (mem)	*3	
		XA, mem	2	2	$XA \leftarrow (mem)$	*3	
		mem, A	2	2	(mem) ← A	*3	
		mem, XA	2	2	(mem) ← XA	*3	
		A, reg	2	2	A ← reg		
		XA, rp	2	2	$XA \leftarrow rp$		
		reg1, A	2	2	reg1 ← A		
		rp1, XA	2	2	rp1 ← XA		
	ХСН	A, @HL	1	1	$A \leftrightarrow (HL)$	*1	
		A, @rpa1	1	1	$A \leftrightarrow (rpa1)$	*2	
		XA, @HL	2	2	$XA \leftrightarrow (HL)$	*1	
		A, mem	2	2	$A \leftrightarrow (mem)$	*3	
		XA, mem	2	2	$XA \leftrightarrow (mem)$	*3	
		A, reg1	1	1	A ↔ reg1		
		XA, rp	2	2	$XA \leftrightarrow rp$		
	MOVT	XA, @PCDE	1	3	ХА ← (PC12-8+DE)ROM		
		XA, @PCXA	1	3	XA ← (PC12-8+XA) _{ROM}		
Arith-	ADDS	A, #n4	1	1+S	$A \leftarrow A+n4$		carry
metic		A, @HL	1	1+S	$A \leftarrow A+(HL)$	*1	carry
Opera-	ADDC	A, @HL	1	1	$A, CY \leftarrow A+(HL)+CY$	*1	
tion	SUBS	A, @HL	1	1+S	$A \leftarrow A$ -(HL)	*1	borrow
	SUBC	A, @HL	1	1	A, $CY \leftarrow A-(HL)-CY$	*1	
	AND	A, #n4	2	2	$A \leftarrow A \land n4$		
		A, @HL	1	1	$A \leftarrow A \land (HL)$	*1	
	OR	A, #n4	2	2	$A \leftarrow A \lor n4$	•	
		A, @HL	1	1	$A \leftarrow A \lor (HL)$	*1	
	XOR	A, #n4	2	2	$A \leftarrow A \lor n4$ A $\leftarrow A \lor n4$	•	
	7.011	A, #114 A, @HL	1	2 1	$A \leftarrow A \neq H4$ $A \leftarrow A \neq (HL)$	*1	
Accumu-	RORC	A, WILL	1	1	$A \leftarrow A \Rightarrow (\Pi L)$ CY $\leftarrow A_0, A_3 \leftarrow CY, A_{n-1} \leftarrow A_n$	I	
lator	none	~			$\Box_1 \leftarrow A_0, A_3 \leftarrow \Box_1, A_{n-1} \leftarrow A_n$		
Manipu- lation	NOT	A	2	2	$A \gets \overline{A}$		

	Mne- monics	Operand	Bytes	Ma- chine Cyc- les	Operation	Ad- dress- ing Area	Skip Conditions
Incre-	INCS	reg	1	1+S	$reg \leftarrow reg+1$		reg = 0
ment/		@HL	2	2+S	$(HL) \leftarrow (HL)+1$	*1	(HL) = 0
Decre-		mem	2	2+S	(mem) ← (mem)+1	*3	(mem) = 0
ment	DECS	reg	1	1+S	reg ← reg-1		reg = FH
Compare	SKE	reg, #n4	2	2+S	Skip if reg = n4		reg = n4
		@HL, #n4	2	2+S	Skip if (HL) = n4		*1(HL) = n4
		A, @HL	1	1+S	Skip if A = (HL)	*1	A = (HL)
		A, reg	2	2+S	Skip if A = reg		A = reg
Carry	SET1	CY	1	1	$CY \leftarrow 1$		
flag	CLR1	CY	1	1	$CY \leftarrow 0$		
Manipu-	SKT	CY	1	1+S	Skip if CY = 1		CY = 1
lation	NOT1	CY	1	1	$CY \leftarrow \overline{CY}$		
Memory/	SET1	mem.bit	2	2	(mem.bit) \leftarrow 1	*3	
Bit		fmem.bit	2	2	(fmem.bit) \leftarrow 1	*4	
Manipu-		pmem.@L	2	2	(pmem ₇₋₂ + L ₃₋₂ .bit(L ₁₋₀)) ← 1	*5	
lation		@H+mem.bit	2	2	(H + mem₃-₀.bit) ← 1	*1	
	CLR1	mem.bit	2	2	(mem.bit) \leftarrow 0	*3	
		fmem.bit	2	2	(fmem.bit) \leftarrow 0	*4	
		pmem.@L	2	2	$(pmem_{7-2} + L_{3-2}.bit(L_{1-0})) \leftarrow 0$	*5	
		@H+mem.bit	2	2	$(H+mem_{3-0}.bit) \leftarrow 0$	*1	
	SKT	mem.bit	2	2+S	Skip if (mem.bit) = 1	*3	(mem.bit) = 1
		fmem.bit	2	2+S	Skip if (fmem.bit) = 1	*4	(fmem.bit) = 1
		pmem.@L	2	2+S	Skip if (pmem7-2+L3-2.bit (L1-0)) = 1	*5	(pmem.@L) = 1
		@H+mem.bit	2	2+S	Skip if (H + mem ₃₋₀ .bit) = 1	*1	(@H+mem.bit) = 1
	SKF	mem.bit	2	2+S	Skip if (mem.bit) = 0	*3	(mem.bit) = 0
		fmem.bit	2	2+S	Skip if (fmem.bit) = 0	*4	(fmem.bit) = 0
		pmem.@L	2	2+S	Skip if (pmem7-2 +L3-2.bit (L1-0)) = 0	*5	(pmem.@L) = 0
		@H+mem.bit	2	2+S	Skip if (H + mem ₃₋₀ .bit) = 0	*1	(@H+mem.bit) = 0
:	SKTCLR	fmem.bit	2	2+S	Skip if (fmem.bit) = 1 and clear	*4	(fmem.bit) = 1
		pmem.@L	2	2+S	Skip if (pmem ₇₋₂ +L ₃₋₂ .bit (L ₁₋₀)) = 1 and clear	*5	(pmem.@L) = 1
		@H+mem.bit	2	2+S	Skip if (H+mem3-0.bit) = 1 and clear	*1	(@H+mem.bit) = 1
	AND1	CY,fmem.bit	2	2	$CY \leftarrow CY \land (fmem.bit)$	*4	
		CY,pmem.@L	2	2	$CY \gets CY \land (pmem_{7\text{-}2}+L_{3\text{-}2}.bit(L_{1\text{-}0}))$	*5	
		CY,@H+mem.bit	2	2	$CY \leftarrow CY \land (H+mem_{3-0}.bit)$	*1	
	OR1	CY,fmem.bit	2	2	$\textbf{CY} \leftarrow \textbf{CY} \lor (\textbf{fmem.bit})$	*4	
		CY,pmem.@L	2	2	$CY \gets CY \lor (pmem_{7\text{-}2} + L_{3\text{-}2}.bit \ (L_{1\text{-}0}))$	*5	
	·	CY,@H+mem.bit	2	2	$CY \leftarrow CY \lor (H\text{+}mem_{3\text{-}0}.bit)$	*1	
	XOR1	CY,fmem.bit	2	2	$CY \leftarrow CY \nleftrightarrow (fmem.bit)$	*4	
		CY,pmem.@L	2	2	$CY \gets CY \neg\!$	*5	
		CY,@H+mem.bit	2	2	CY ← CY ∨ (H+mem₃₋₀.bit)	*1	

Instruc- tions	Mne- monics	Operand	Bytes	Ma- chine Cyc- les	Operation	Ad- dress- ing Area	Skip Conditions
Branch	BR	addr			PC ₁₂₋₀ ← addr (The most suitable instruction is selectable from among BR !addr, BRCB !caddr, and BR \$addr depending on the assembler.)	*6	
		!addr	3	3	$PC_{12-0} \leftarrow addr$	*6	
		\$addr	1	2	$PC_{12-0} \leftarrow addr$	*7	
	BRCB	!caddr	2	2	$PC_{11-0} \leftarrow caddr_{11-0}$	*8	
Subrou- tine/ Stack	CALL	!addr	3	3	$\begin{array}{l} (SP\text{-4})(SP\text{-1})(SP\text{-2}) \leftarrow PC_{11\text{-0}} \\ (SP\text{-3}) \leftarrow MBE, \ 0, \ 0, \ PC_{12} \\ PC_{12\text{-0}} \leftarrow addr, \ SP \leftarrow SP\text{-4} \end{array}$	*6	
Control	CALLF	!faddr	2	2	$\begin{array}{l} (SP-4)(SP-1)(SP-2) \leftarrow PC_{11-0} \\ (SP-3) \leftarrow MBE, \ 0, \ 0, \ PC_{12} \\ PC_{12-0} \leftarrow 00, \ faddr, \ SP \leftarrow SP-4 \end{array}$	*9	
	RET		1	3	$\begin{array}{l} MBE, x, x, PC_{12 \leftarrow (SP+1)}\\ PC_{11\text{-}0} \leftarrow (SP)(SP+3)(SP+2)\\ SP \leftarrow SP+4 \end{array}$		
	RETS		1	3+S	$\begin{array}{l} MBE, x, x, PC_{12} \leftarrow (SP+1) \\ PC_{11\text{-}0} \leftarrow (SP)(SP+3)(SP+2) \\ SP \leftarrow SP+4, then \ skip \ unconditionally \end{array}$		Undefined
	RET1		1	3	$\begin{array}{l} MBE, x, x, PC_{12 \leftarrow (SP+1)} \\ PC_{11-0 \leftarrow (SP)(SP+3)(SP+2)} \\ PSW \leftarrow (SP+4)(SP+5), SP \leftarrow SP+6 \end{array}$		
	PUSH	rp	1	1	$(SP-1)(SP-2) \leftarrow rp, SP \leftarrow SP-2$		
		BS	2	2	$(SP-1) \gets MBS, (SP-2) \gets 0, SP \gets SP-2$		
	POP	rp	1	1	$rp \leftarrow (SP+1)(SP), SP \leftarrow SP+2$		
		BS	2	2	$MBS \gets (SP+1), SP \gets SP+2$		
Inter-	EI		2	2	$IME \leftarrow 1$		
rupt		IExxx	2	2	$IExxx \leftarrow 1$		
Control	DI		2	2	$IME \leftarrow 0$		
		IExxx	2	2	$IExxx \leftarrow 0$		
I/O	IN *1	A,PORTn	2	2	$A \leftarrow PORT_n$ (n = 0-8)		
		XA,PORTn	2	2	$XA \leftarrow PORT_{n+1}, PORT_n$ (n = 4, 6)		
	OUT *1	PORTn,A	2	2	$PORT_n \leftarrow A$ (n = 2-8)		
		PORTn,XA	2	2	$PORT_{n+1}, PORT_n \leftarrow XA$ (n = 4, 6)		
CPU	HALT		2	2	Set HALT Mode (PCC.2 \leftarrow 1)		
Control	STOP		2	2	Set STOP Mode (PCC.3 \leftarrow 1)		
	NOP		1	1	No Operation		
Special	SEL	MBn	2	2	MBS ← n (n = 0, 1, 15)		
	GETI *2	taddr	1	3	$\label{eq:started} \begin{array}{l} \cdot \text{ Where TBR instruction,} \\ PC_{12:0} \leftarrow (taddr)_{4:0}+(taddr+1) \\ \cdot \text{ Where TCALL instruction,} \\ (SP-4)(SP-1)(SP-2) \leftarrow PC_{11:0} \\ (SP-3) \leftarrow \text{ MBE, } 0, 0, \text{ PC}_{12} \\ PC_{12:0} \leftarrow (taddr)_{4:0}+(taddr+1) \\ SP \leftarrow SP-4 \\ \end{array}$	*10	
					 Except for TBR and TCALL instructions, Instruction execution of (taddr)(taddr+1) 		Depends on referenced instruction

*1: When executing the IN/OUT instruction, MBE = 0, or MBE = 1, and MBS = 15.

^{2:} The TBR, and TCALL instructions are the assembler pseudo-instructions for the table definition of GETI instruction.

10. ELECTRICAL SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS ($T_a = 25^{\circ}C$)

Parameter	Symbol	Conditions		Ratings	Unit
Supply Voltage	Vdd			-0.3 to +7.0	V
Supply Voltage nput Voltage Dutput Voltage High-Level Output Current .ow-Level Output Current	VI1	Other than ports 4, 5		-0.3 to VDD+0.3	V
	Vı2	Ports 4, 5	w/pull-up resistor	-0.3 to V _{DD} +0.3	V
			Open drain	-0.3 to +11	V
Output Voltage	Vo			-0.3 to VDD+0.3	V
High-Level Output	Іон	1 pin	-15	mA	
Current		All pins		-30	mA
Low-Level Output	lol*	1 pin	Peak	30	mA
Current			rms	15	mA
		Other than ports 0, 2, 3, 5, 8	Peak	100	mA
			rms	60	mA
		Total of ports 4, 6, 7	Peak	100	mA
			rms	60	mA
Operating Temperature	Topt			-40 to +85	°C
Storage Temperature	Tstg			-65 to +150	°C

*: rms = Peak value $x \sqrt{Duty}$

CAPACITANCE ($T_a = 25^{\circ}C$, $V_{DD} = 0$ V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Input Capacitance	CIN	f = 1 MHz			15	pF
Output Capacitance	Соит	Pins other than thosemeasured are at 0 V $\!$			15	pF
Input/Output Capacitance	Сю				15	pF

OPERATING SUPPLY VOLTAGE

Parameter		Symbol	Conditions	MIN.	MAX.	Unit
A/D Converter	Supply voltage	Vdd		3.5	6.0	V
	Ambient temperature	Ta		-10	+70	°C
Other Circuits	Supply voltage	Vdd		2.7	6.0	V
	Ambient temperatuare	Ta		-40	+85	°C

MAIN SYSTEM CLOCK OSCILLATOR CIRCUIT CHARACTERISTICS

(Ta = -40 to +85°C, V_{DD} = 2.7 to 6.0 V)

Oscillator	Recommended Constants	ltem	Conditions	MIN.	TYP.	MAX.	Unit
Ceramic * ³		Oscillation frequency(fxx)* ¹		1.0		5.0 ^{*4}	MHz
		Oscillation stabiliza- tion time* ²	After VDD came to MIN. of oscillation voltage range			4	ms
Crystal * ³		Oscillation frequency (fxx)*1		1.0	4.19	5.0 ^{*4}	MHz
	<u>x1 x2</u>	Oscillation stabiliza-	$V_{DD} = 4.5 \text{ to } 6.0 \text{ V}$			10	ms
		tion time* ²				30	ms
External Clock	1 1	X1 input frequency (f _x)* ¹		1.0		5.0 ^{*4}	MHz
	X1 X2	X1 input high-, low-level widths (txH, txL)		100		500	ns

*1: The oscillation frequency and X1 input frequency are indicated only to express the characteristics of the oscillator circuit.

For instruction execution time, refer to AC Characteristics.

- 2: Time required for oscillation to stabilize after V_{DD} reaches the minimum value of the oscillation voltage range or the STOP mode has been released.
- 3: The oscillators on the next page are recommended.
- 4: When the oscillation frequency is 4.19 MHz < fx \leq 5.0 MHz, do not select PCC = 0011 as the instruction execution time: otherwise, one machine cycle is set to less than 0.95 μ s, falling short of the rated minimum value of 0.95 μ s.

SUBSYSTEM CLOCK OSCILLATOR CIRCUIT CHARACTERISTICS

(T_a = -40 to +85°C, V_{DD} = 2.7 to 6.0 V)

Oscillator	Recommended Constants	ltem	Conditions	MIN.	TYP.	MAX.	Unit
Crystal	XT1 XT2	Oscillation frequency (fxt)		32	32.768	35	kHz
	× × × ×	Oscillation stabiliza-	$V_{DD} = 4.5 \text{ to } 6.0 \text{ V}$		1.0	2	s
	↓ □ ↓ ↓	tion time*				10	S
External Clock	1 1	XT1 input frequency (fxT)*		32		100	kHz
	XT1 XT2 Open	XT1 input high-, low-level widths (txTH, txTL)		5		15	μs

╈

- *: Time required for oscillation to stabilize after VDD reaches the minimum value of the oscillation voltage range.
- **Note:** When using the oscillation circuit of the main system clock and subsystem clock, wire the portion enclosed in dotted line in the figures as follows to avoid adverse influences on the wiring capacity:
 - Keep the wiring length as short as possible.
 - Do not cross the wiring over the other signal lines. Do not route the wiring in the vicinity of lines through which a high alternating current flows.
 - Always keep the ground point of the capacitor of the oscillator circuit at the same potential as VDD. Do not connect the power source pattern through which a high current flows.
 - Do not extract signals from the oscillation circuit.

The amplification factor of the subsystem clock oscillation circuit is designed to be low to reduce the current dissipation and therefore, the subsystem clock oscillation circuit is influenced by noise more easily than the main system clock oscillation circuit. When using the subsystem clock, therefore, exercise utmost care in wiring the circuit.

RECOMMENDED OSCILLATION CIRCUIT CONSTANTS

Recommended Circuit Operating Manufac-Frequency Constants Voltage Range Product Name turer (MHz) C1 (pF) C2 (pF) MIN. (V) MAX. (V) CSAx.xxMG093 30 Murata 30 2.7 2.00 to 2.44 Mfg. CSTx.xxMG093 Unnecessary Unnecessary 2.7 Co., Ltd. CSAx.xxMGU 30 2.7 30 2.45 to 5.00 6.0 CSTx.xxMGU Unnecessary Unnecessary 2.7 CSAx.xxMG 30 30 3.0 2.00 to 5.00 CSTx.xxMG Unnecessary Unnecessary 3.0 Kyoto KBR-2.0MS 2.00 47 47 2.7 Ceramic KBR-4.0MS 4.00 33 33 2.7 6.0 Co., Ltd. KBR-5.0M 5.00 33 33 3.0

MAIN SYSTEM CLOCK: CERAMIC OSCILLATOR (Ta = -40 to +85°C)

MAIN SYSTEM CLOCK: CRYSTAL OSCILLATOR (T_a = -20 to +70°C)

Manufac- turer Product Nam	Product Name	Frequency	Recommende Constants	Operating Voltage Range		
		(MHz)	C1 (pF)	C2 (pF)	MIN. (V)	MAX. (V)
Kinseki	HC-18U HC-43U, 49/U	2.0 to 5.0	22 *	22	2.7	6.0

*: Adjust the oscillation frequency in a range of C1 = 15 to 33 pF.

SUBSYSTEM CLOCK: CRYSTAL OSCILLATOR (Ta = -10 to +60°C)

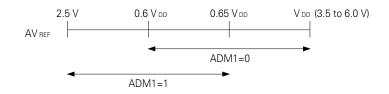
Manufac- turer	Product Name	Frequency	Recom Consta	imended Circ ints	Operating Voltage Range		
		(MHz)	C3 (pF)	C4 (pF)	R (kΩ)	MIN. (V)	MAX. (V)
Kinseki	P3	32.768	22 *	22	330	2.7	6.0

*: Adjust the oscillation frequency in a range of C3 = 3 to 30 pF.

DC CHARACTERISTICS (Ta = -40 to +85°C, V_{DD} = 2.7 to 6.0 V)

Parameter	Symbol	Condi	tions	MIN.	TYP.	MAX.	Unit
High-Level Input	VIH1	Ports 2, 3, 8		0.7VDD		Vdd	V
Voltage	VIH2	Ports 0, 1, 6, 7, RES	ET	0.8VDD		Vdd	V
	Vінз	Ports 4, 5	w/pull-up resistor	0.7VDD		Vdd	V
			Open-drain	0.7VDD		10	V
	VIH4	X1, X2, XT1		VDD-0.5		Vdd	V
Low-level Input	VIL1	Ports 2, 3, 4, 5, 8		0		0.3Vdd	V
Voltage	VIL2	Ports 0, 1, 6, 7, RES	ET	0		0.2VDD	V
	VIL3	X1, X2, XT1		0		0.4	V
High-Level Output Voltage	Vон1	Ports 0, 2, 3, 6, 7, 8, and BIAS	V _{DD} = 4.5 to 6.0 V Іон = -1 mA	Vdd-1.0			V
			Іон = -100 μА	VDD-0.5			V
	Vон2	BP0-7 (with two Іон	V _{DD} = 4.5 to 6.0 V Іон = -100 µА	VDD-2.0			V
		outputs)	Іон = -50 μА	Vdd-1.0			V
Low-Level Output Voltage	Vol1	Ports 0, 2, 3, 4, 5, 6, 7, and 8	Ports 3, 4, and 5 V _{DD} = 4.5 to 6.0 V I _{OL} = -15 mA		0.4 2.0		V
			V _{DD} = 4.5 to 6.0 V lo _L = 1.6 mA			0.4	V
			Ιοι = 400 μΑ			0.5	V
		SB0, 1	Open-drain Pull-up resistor ≥ 1 kΩ			0.2VDD	V
	VOL2BP0-7 (with two loL outputs)VDD = 4.5 to 6.0 V loL = 100 μ A1.0	1.0	V				
		outputs)	Ιοι = 50 μΑ			1.0	V
High-Level Input	Іцні	Vin = Vdd	Other than below			3	μA
Leakage Current	ILIH2		X1, X2, XT1			20	μA
	Ілнз	$V_{IN} = 10 V$	Ports 4, 5 (open-drain)			20	μA
Low-Level Input		$V_{IN} = 0 V$	Other than below			-3	μA
Leakage Current	ILIL2		X1, X2, XT1			-20	μA
High-Level Output	ILOH1	Vout = Vdd	Other than below			3	μA
Leakage Current	Iloh2	Vout = 10 V	Ports 4, 5 (open-drain)			20	μA
Low-Level Output Leakage Current	Ιίοι	Vout = 0 V				-3	μA
Internal Pull-Up Resistor	RL1	Ports 0, 1, 2, 3, 6, 7, 8	$V_{DD} = 5.0 V \pm 10\%$	15	40	80	kΩ
		(except P00) $V_{IN} = 0V$	$V_{DD} = 3.0 V \pm 10\%$	30		300	kΩ
	RL2	Ports 4, 5	$V_{DD} = 5.0 V \pm 10\%$	15	40	70	kΩ
		$V_{OUT} = V_{DD}-2.0 V$	$V_{DD} = 3.0 V \pm 10\%$	10		60	kΩ
LCD Drive Voltage	VLCD			2.5		Vdd	V
LCD Step-down Resistor	RLCD			60	100	140	kΩ
LCD Output Voltage Deviation (Common) *1	Vodc	$Io = \pm 5 \ \mu A$	$V_{LCD0} = V_{LCD}$ $V_{LCD1} = V_{LCD} \times 2/3$	0		±0.2 V	V
LCD Output Voltage Deviation (Segment) *1	Vods	$Io = \pm 1 \ \mu A$	$ V_{LCD2} = V_{LCD} \times 1/3 \\ 2.7 \ V \le V_{LCD} \le V_{DD} $	0		±0.2 V	V

Parameter	Symbol	Co	onditions		MIN.	TYP.	MAX.	Unit
Supply Current *2	Idd1	4.19 MHz* ³ crystal	$V_{DD} = 5 V \pm 10^{\circ}$	%*4		2.5	8	mA
		oscillator	$V_{DD} = 3 V \pm 10^{\circ}$	%* ⁵		0.35	1.2	mA
	Idd2	C1 = C2 = 22pF	HALT mode	$V_{DD} = 5 V \pm 10\%$		500	1500	μΑ
		32 kHz* ⁶ crystal		$V_{DD} = 3 V \pm 10\%$		150	450	μA
	Іддз	32 kHz ^{*6} crystal oscillator	Operation mode	$V_{DD} = 3 V \pm 10\%$		30	90	μA
	IDD4		HALT mode	$V_{DD} = 3 V \pm 10\%$		5	15	μA
	Idd5	XT1 = 0 V	$V_{DD} = 5 V \pm 10^{\circ}$	%		0.5	20	μΑ
		STOP mode	Vdd = 3 V±10%			0.1	10	μA
				$T_a=25^\circ C$		0.1	5	μΑ


- *1: "Voltage deviation" means the difference between the ideal segment or common output value $(V_{LCDn}: n = 0, 1, 2)$ and output voltage.
- 2: Currents for the built-in pull-up resistor and the LCD step-down resistor are not included.
- 3: Including when the subsystem clock is operated.
- 4: When operand in the high-speed mode with the processor clock control register (PCC) set to 0011.
- 5: When operated in the low-speed mode with the PCC set to 0000.
- 6: When operated with the subsystem clock by setting the system clock control register (SCC) to 1011 to stop the main system clock operation.

A/D CONVERTER (Ta = -10 to +85°C, V_{DD} = 3.5 to 6.0 V, AVss = Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution			8	8	8	bit
Absolute Accuracy*1		$2.5 \text{ V} \leq AV_{\text{REF}} \leq V_{\text{DD}}^{*2}$			±1.5	LSB
Conversion Time	tconv	*3			168/fx	S
Sampling Time	t SAMP	*4			44/f×	S
Analog Input Voltage	VIAN		AVss		AVREF	V
Analog Input Impedance	RAN			1000		MΩ
AVREF Current	IREF			0.25	2.0	mA

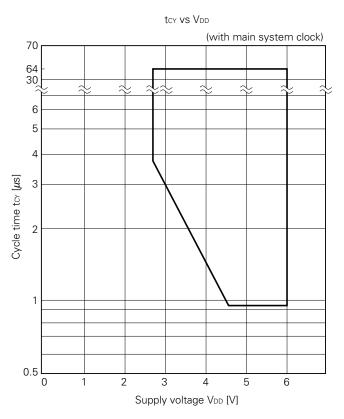
*1: Absolute accuracy excluding quantization error ($\pm \frac{1}{2}$ LSB)

2: Set ADM1 as follows, in respect to the reference voltage of the AD converter (AVREF).

ADM1 can be set to either 0 or 1 when $0.6V\textsc{dd} \leq AV\textsc{ref} \leq 0.65V\textsc{dd}$

3: Time since execution of conversion start instruction until EOC = 1 (fx = 4.19 MHz: 40.1 μ s)

4: Time since execution of conversion start instruction until end of sampling (fx = 4.19 MHz: 10.5μ s)


Parameter	Symbol	Conditi	MIN.	TYP.	MAX.	Unit	
CPU Clock Cycle Time	tcy	w/main system clock	V _{DD} = 4.5 to 6.0 V	0.95		64	μs
(Minimum Instruction Execution Time				3.8		64	μs
= 1 Machine Cycle)*1		w/sub-system clock		114	122	125	μs
TIO Input Frequency	f⊤i	V _{DD} = 4.5 to 6.0 V		0		1	MHz
				0		275	kHz
TI0 Input High-, Low-	tтıн,	V _{DD} = 4.5 to 6.0 V		0.48			μs
Level Widths	t _{TIL}			1.8			μs
Interrupt Input High-,	t intн,	INT0		*2			μs
Low-Level Widths	tintl	INT1, 2, 4		10			μs
		KR0-7		10			μs
RESET Low-Level Width	trsl			10			μs

AC CHARACTERISTICS (Ta = -40 to +85°C, V_{DD} = 2.7 to 6.0 V)

*1: The CPU clock (Φ) cycle time is determined by the oscillation frequency of the connected oscillator, system clock control register (SCC), and processor clock control register (PCC).
 The figure on the right is cycle time tor ys, supply voltage Vpp characteristics

vs. supply voltage $V_{\mbox{\tiny DD}}$ characteristics at the main system clock.

2: 2tcy or 128/fx depending on the setting of the interrupt mode register (IM0).

SERIAL TRANSFER OPERATION

Two-Line and Three-Line Serial I/O Modes (SCK: internal clock output)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
SCK Cycle Time	tkcy1	V _{DD} = 4.5 to 6.0 V		1600			ns
				3800			ns
SCK High-, Low-Level	tkl1	V _{DD} = 4.5 to 6.0 V		tксү1/2-50			ns
Widths	tкнı			tксү1/2-150			ns
SI Set-Up Time (vs. SCK ↑)	tsik1			150			ns
SI Hold Time (vs. \overline{SCK} \uparrow)	tksi1			400			ns
$\overline{SCK} \downarrow \rightarrow SO Output$	tkso1	R∟= 1 kΩ,	V _{DD} = 4.5 to 6.0 V			250	ns
Delay Time		C _L = 100 pF*				1000	ns

*: R_{L} and C_{L} are load resistance and load capacitance of the SO output line.

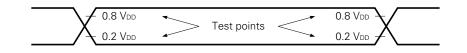
TWO-LINE AND THREE-LINE SERIAL I/O MODES (SCK: external clock input)

Parameter	Symbol	Conditions			TYP.	MAX.	Unit
SCK Cycle Time	t ксү2	VDD = 4.5 to 6.0 V		800			ns
				3200			ns
SCK High-, Low-Level	tkl2	V _{DD} = 4.5 to 6.0 V		400			ns
Widths	tкн2			1600			ns
SI Set-Up Time (vs. SCK ↑)	tsik2			100			ns
SI Hold Time (vs. SCK ↑)	tksi2			400			ns
$\overline{SCK} \downarrow \rightarrow SO Output$	tkso2	$R_L = 1 \ k\Omega$, $C_L = 100 \ pF^*$	$V_{DD} = 4.5 \text{ to } 6.0 \text{ V}$			300	ns
Delay Time						1000	ns

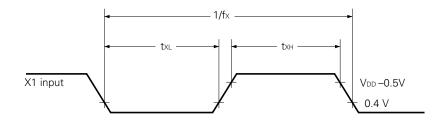
*: $\mathsf{R}_{\scriptscriptstyle L}$ and $\mathsf{C}_{\scriptscriptstyle L}$ are load resistance and load capacitance of the SO output line.

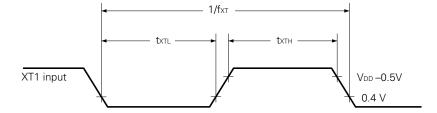
SBI MODE (SCK: internal clock output (master))

Parameter	Symbol	Condit	ions	MIN.	TYP.	MAX.	Unit
SCK Cycle Time	tксүз	V _{DD} = 4.5 to 6.0 V		1600			ns
				3800			ns
SCK High-, Low-Level	tĸl3	$V_{DD} = 4.5 \text{ to } 6.0 \text{ V}$		tксүз/2-50			ns
Widths	tкнз			tксүз/2-150			ns
SB0, 1 Set-Up Time (vs. SCK ↑)	tsıкз			150			ns
SB0, 1 Hold Time (vs. SCK ↑)	tкsıз			tксүз/2			ns
$\overline{SCK}\downarrow\leftarrowSB0, 1 Output$	tкsoз	R∟ = 1 kΩ,	$V_{DD} = 4.5 \text{ to } 6.0 \text{ V}$	0		250	ns
Delay Time		$C_{L} = 100 \text{ pF}^{*}$		0		1000	ns
$\overline{SCK} \uparrow \rightarrow SB0, \ 1 \downarrow$	tкsв			tксүз			ns
SB0,1 $\downarrow \rightarrow \overline{SCK}$	tsвк			tксүз			ns
SB0, 1 Low-Level Width	t sbl			tксүз			ns
SB0, 1 High-Level Width	tsвн			tксүз			ns

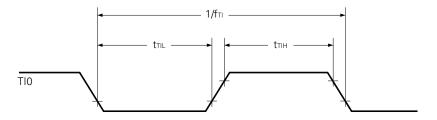

*: $\mathsf{R}_{\scriptscriptstyle L}$ and $\mathsf{C}_{\scriptscriptstyle L}$ are load resistance and load capacitance of the SO output line.

SBI MODE (SCK: external clock input (slave))

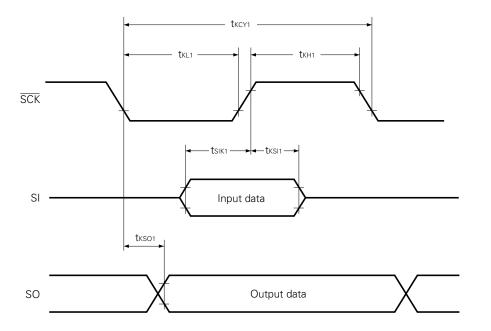

Parameter	Symbol	Condit	ions	MIN.	TYP.	MAX.	Unit
SCK Cycle Time	tkcy4	$V_{DD} = 4.5 \text{ to } 6.0 \text{ V}$		800			ns
				3200			ns
SCK High-, Low-Level	tĸL4	$V_{DD} = 4.5 \text{ to } 6.0 \text{ V}$		400			ns
Widths	t кн4			1600			ns
SB0, <u>1 S</u> et-Up Time (vs. SCK ↑)	tsik4			100			ns
SB0, 1 Hold Time (vs. SCK ↑)	tksi4			tксү4/2			ns
$\overline{SCK}\downarrow\leftarrowSB0, 1 Output$	tkso4	R∟ = 1 kΩ,	VDD = 4.5 to 6.0 V	0		300	ns
Delay Time		C _L = 100 pF*		0		1000	ns
$\overline{SCK} \uparrow \rightarrow SB0, \ 1 \downarrow$	tкsв			tkcy4			ns
$SB0,1 \downarrow \rightarrow \overline{SCK} \downarrow$	tsвк			tkcy4			ns
SB0, 1 Low-Level Width	t sbl			tkcy4			ns
SB0, 1 High-Level Width	tsвн			tkcy4			ns


*: $\mathsf{R}_{\scriptscriptstyle L}$ and $\mathsf{C}_{\scriptscriptstyle L}$ are load resistance and load capacitance of the SO output line.

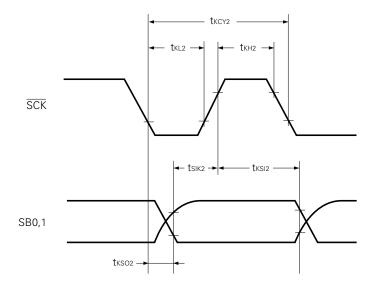
AC TIMING TEST POINT (excluding X1 and XT1 inputs)



CLOCK TIMING

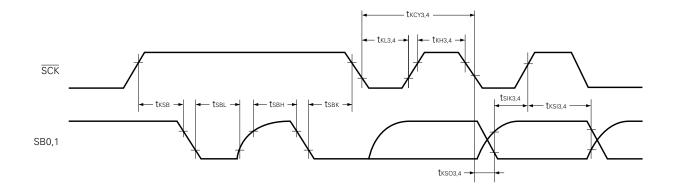


TIO TIMING

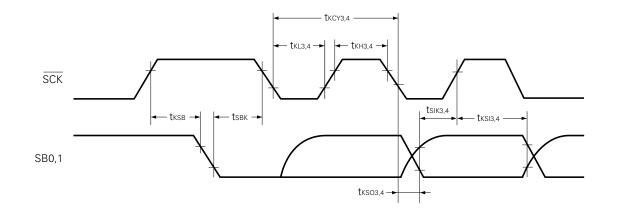


SERIAL TRANSFER TIMING

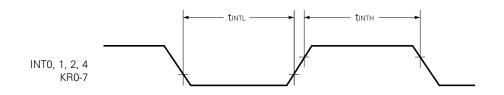
THREE-LINE SERIAL I/O MODE:

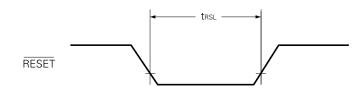


TWO-LINE SERIAL I/O MODE:



SERIAL TRANSFER TIMING


BUS RELEASE SIGNAL TRANSFER:


COMMAND SIGNAL TRANSFER:

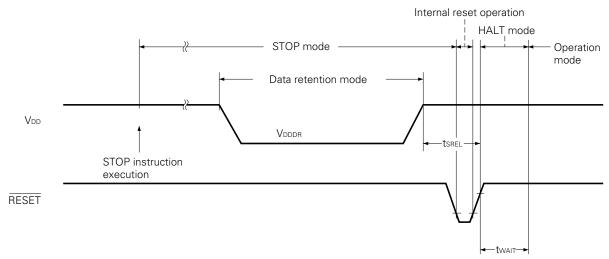
INTERRUPT INPUT TIMING:


```
RESET INPUT TIMING:
```

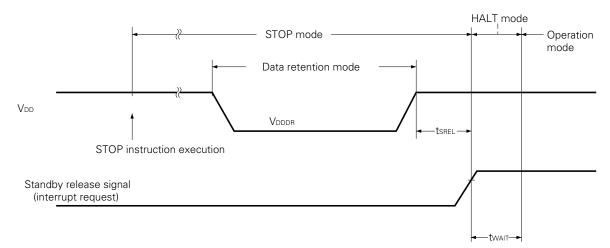

LOW-VOLTAGE DATA RETENTION CHARACTERISTICS OF DATA MEMORY IN STOP MODE

(Ta = -40 to +85 °C)

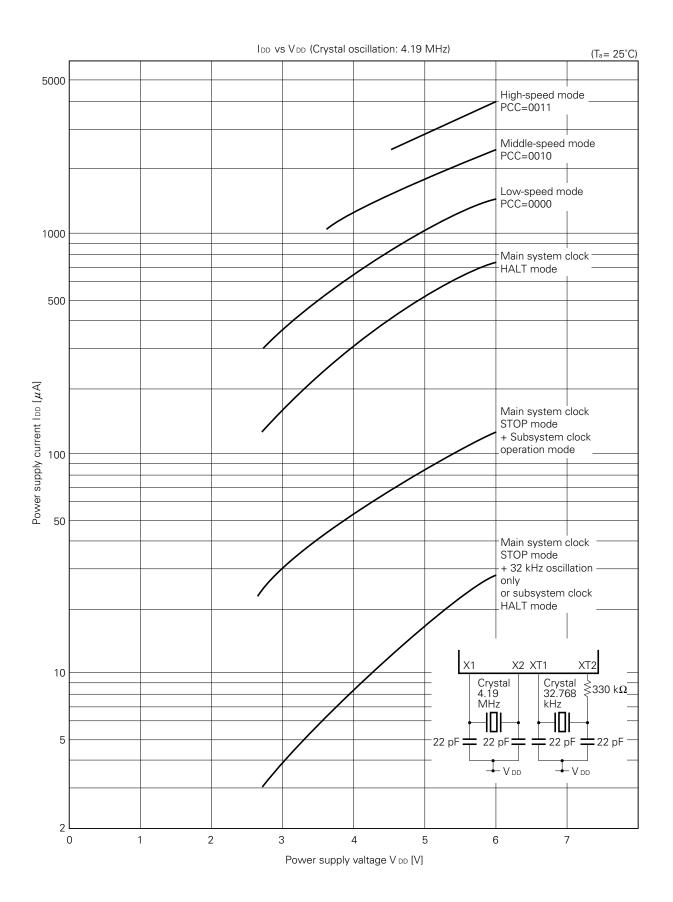
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data Retention Supply Voltage	Vdddr		2.0		6.0	V
Data Retention Supply Current ^{*1}	Idddr	$V_{DDDR} = 2.0 V$		0.1	10	μA
Release Signal Set Time	tsrel		0			μs
Oscillation Stabilization	twait	Released by RESET		2 ¹⁷ /fx		ms
Wait Time* ²		Released by interrupt		*3		ms

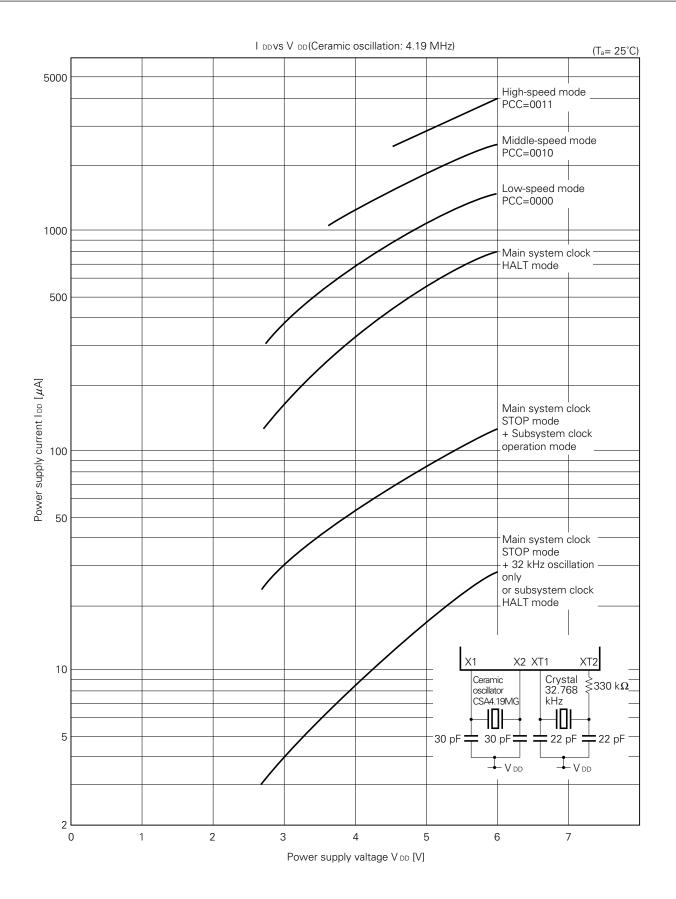

*1: Does not include current flowing through internal pull-up resistor

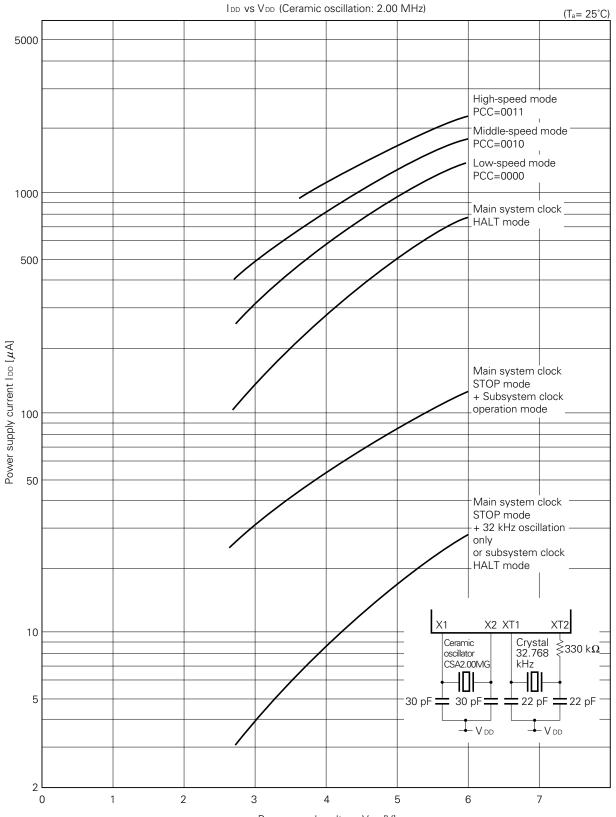
2: The oscillation stabilization wait time is the time during which the CPU is stopped to prevent unstable operation when oscillation is started.


BTM3	BTM2	BTM1	BTM0	WAIT time (): $fxx = 4.19 \text{ MHz}$
-	0	0	0	2 ²⁰ /fxx (approx. 250 ms)
-	0	1	1	2 ¹⁷ /fxx (approx. 31.3 ms)
-	1	0	1	2 ¹⁵ /fxx (approx. 7.82 ms)
-	1	1	1	2 ¹³ /fxx (approx. 1.95 ms)

3: Depends on the setting of the basic interval timer mode register (BTM) as follows:


DATA RETENTION TIMING (releasing STOP mode by RESET)




DATA RETENTION TIMING (standby release signal: releasing STOP mode by interrupt)

11. CHARACTERISTIC CURVES (REFERENCE VALUE)

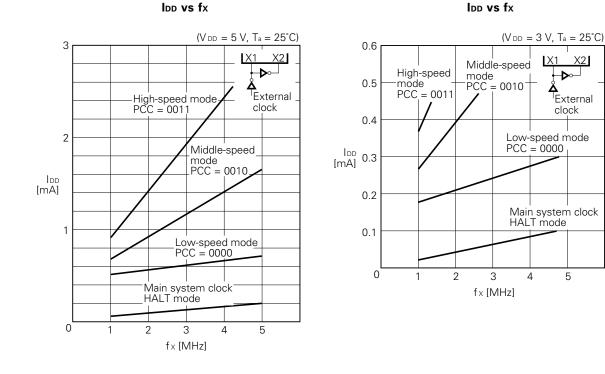
Power supply valtage V $_{\text{DD}}$ [V]

X1

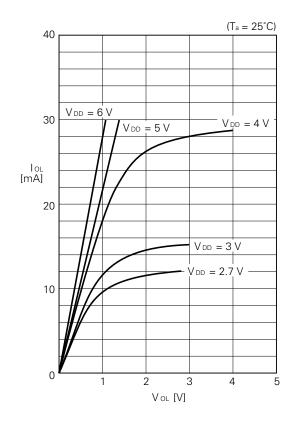
Å

⊳

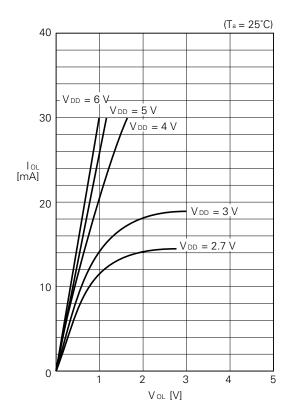
External

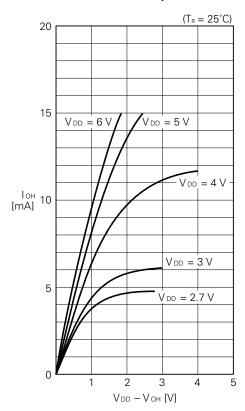

clock

5

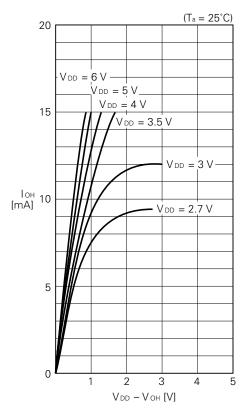

4

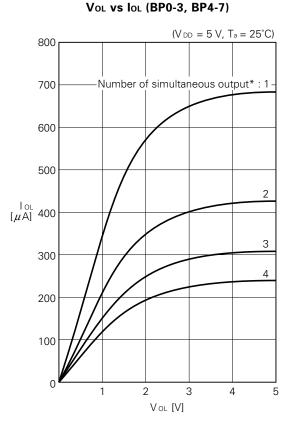
X2



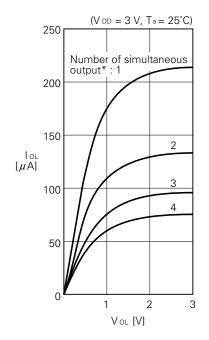


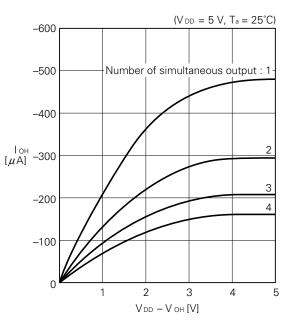
Vol vs lol (PORT 0, 2, 6, 7, 8)


VOL VS IOL (PORT 3, 4, 5)

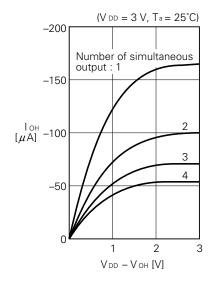


Voн vs loн (Except for P83)

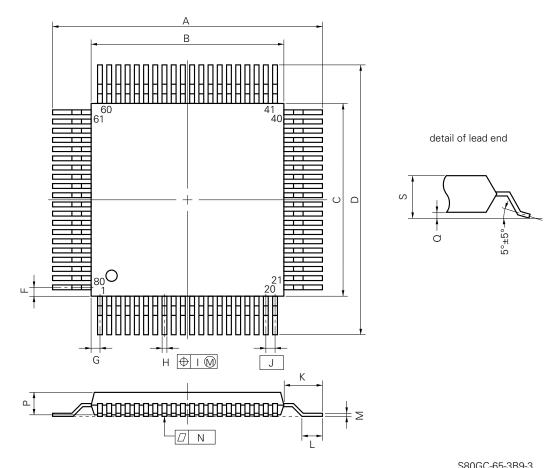

Vон vs Іон (Р83)



* Of pins BP0-BP3 and BP4-BP7, for each, the number of pins simultaneously outputting the same level.



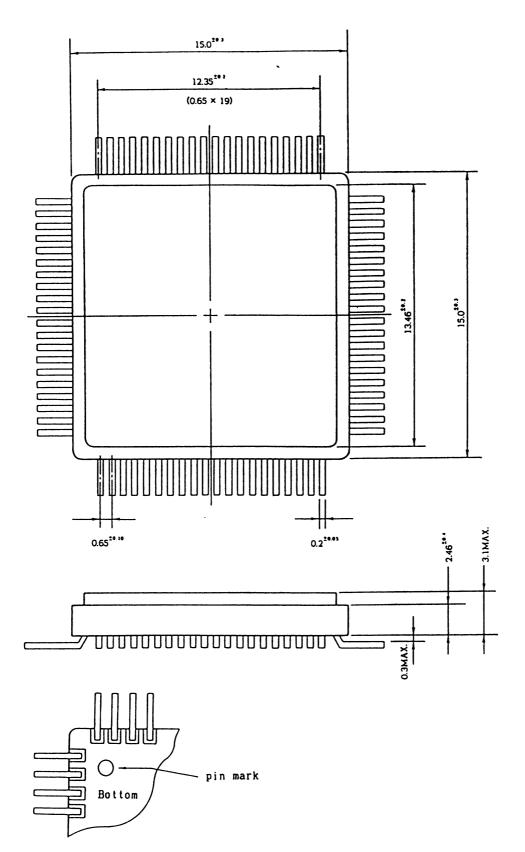
Voн vs loн (ВР0-3, ВР4-7)



Voн vs Ioн (ВР0-3, ВР4-7)

12. PACKAGE DRAWINGS

80 PIN PLASTIC QFP (□14)



ΝΟΤΕ

Each lead centerline is located within 0.13 mm (0.005 inch) of its true position (T.P.) at maximum material condition.

		S80GC-65-3B9-3
ITEM	MILLIMETERS	INCHES
А	17.2±0.4	0.677±0.016
В	14.0±0.2	$0.551^{+0.009}_{-0.008}$
С	14.0±0.2	$0.551^{+0.009}_{-0.008}$
D	17.2±0.4	0.677±0.016
F	0.8	0.031
G	0.8	0.031
Н	0.30±0.10	$0.012\substack{+0.004 \\ -0.005}$
Ι	0.13	0.005
J	0.65 (T.P.)	0.026 (T.P.)
К	1.6±0.2	0.063±0.008
L	0.8±0.2	0.031 ^{+0.009} _{-0.008}
М	$0.15^{+0.10}_{-0.05}$	0.006 ^{+0.004} 0.003
N	0.10	0.004
Р	2.7	0.106
Q	0.1±0.1	0.004±0.004
S	3.0 MAX.	0.119 MAX.

80-PIN CERAMIC QFP FOR ES (UNITS IN mm)

Notes: Lead edge cutoff process is not under the process control; therefore the lead length is not specified.

13. RECOMMENDED SOLDERING CONDITIONS

It is recommended that μ PD75328 be soldered under the following conditions.

For details on the recommended soldering conditions, refer to Information Document "Semiconductor Devices Mounting Manual" (IEI-616).

The soldering methods and conditions are not listed here, consult NEC.

Table 13-1 Soldering Conditions

µPD75328GC - xxx - 3B9: 80-pin plastic QFP (□14 mm)

Soldering Method	Soldering Conditions	Symbol for Recommended Condition
Wave Soldering	Soldering bath temperature: 260°C max., time: 10 seconds max., number of times: 1, pre-heating temperature: 120°C max. (package surface temperature), maximum number of days: 2 days*, (beyond this period, 16 hours of pre-baking is required at 125°C).	WS60-162-1
Infrared Reflow	Package peak temperature: 230°C, time: 30 seconds max. (210°C min.), number of times: 1, maximum number of days: 2 days* (beyond this period, 16 hours of pre-baking is required at 125°C)	IR30-162-1
VPS Reflow	Package peak temperature: 215°C, time: 40 seconds max. (200°C min.), number of times: 1, maximum number of days: 2 days* (beyond this period, 16 hours of pre-baking is required at 125°C)	VP15-162-1
Pin Partial Heating	Pin temperature: 300°C max., time: 3 seconds max. (per side)	_

*: Number of days after unpacking the dry pack. Storage conditions are 25°C and 65%RH max.

Caution: Do not use two or more soldering methods in combination (except the pin partial heating method).

– Notice –

A model that can be soldered under the more stringent conditions (infrared reflow peak temperature: 235°C, number of times: 2, and an extended number of days) is also available. For details, consult NEC.

61

APPENDIX A. COMPARISON OF FEATURES BETWEEN μ PD75328 AND μ PD75308

ltem	Name		μPD75328	3		μPD753	08		
ROM (By	vtes)			806	064				
RAM (× 4	4 Bits)		512						
General- Register	Purpose		4-bit manipulation: 8 × 4 banks 8-bit manipulation: 4 × 4 banks						
Instructio	on Cycle			.91 μs, 15.3 m s (ma operating at 32.768		m clock: operating	at 4.19 MHz) and		
Input/ Output	COMS Input		8 (shared with INT, SI, SO) Can be pulled up using software,			8 (shared with INT, SI, SO)	Can be pulled up using software,		
Port	CMOS Input/ Output	36 (44	20 (4 lines can directly drive LED)	except for P00	32 (40	16 (4 lines can directly drive LED)	except for P00		
	CMOS Output	max.)	4/8 (shared with s can be selected u	•	max.)	4/8 (shared with can be selected u	0 1 /		
	N-ch Input/ Output		8 (can directly drive LED, can be sustain with 10 V, and can be pulled up by mask option)			8 (can directly dr sustain with 10 V pulled up by mas	, and can be		
Timer/Co	ounter	• Basic	r/event counter c interval timer h timer						
Serial In	terface			erial bus interface (zed serial interface		possible			
A/D Con	verter	6-chanı	nel analog input, 8-	-bit resolution					
Vector In	iterrupt	Externa	al: 3, internal: 3						
Test Inpu	Jt		External: 1, interr	nal: 1					
Instructio	on Set	• 4-bit	ata set/reset/test/bo data transfer/arithr data transfer	oolean operation metic/increment/deo	crement/	comparison			
 Display Function LCD controller Segment outputs: 20 (4/8 can be set for output port by using software) Common outputs: 4 Display mode (static, 1/2, 1/3, 1/4) Built-in step-down resistor network for LCD drive voltage supply (mask option) 			or network for LCD	 Segr (4/8 or softw Com Disp (station Builton 	ontroller ment outputs: 32 can be set for outp vare) mon outputs: 4 lay mode ic, 1/2, 1/3, 1/4) -in step-down resiste e voltage supply (m	or network for LCD			
Operatin	g Voltage			2.7 to	6.0 V				
Package		80-pin	plastic QFP (🗆 14m	ım)	80-pin	plastic QFP (14×20	mm)		

★

APPENDIX B. DEVELOPMENT TOOLS

The following development support tools are readily available to support development of systems using μ PD75328:

PROM writing tools

Hardware	IE-75000-R *1 IE-75001-R	In-circuit emulator for 75X series
	IE-75000-R-EM *2	Emulation board for IE-75000-R and IE-75001-R
	EP-75328GC-R	Emulation prove for μ PD75328GC, provided with 80-pin conversion socket
	EV-9200GC-80	EV-9200GC-80.
	PG-1500	PROM programmer
	PA-75P328GC	PROM programmer adapter solely used for μ PD75P328GC. It is connected to PG-1500.
Software	IE Control Program	Host machine • PC-9800 series (MS-DOS™ Ver.3.30 to Ver.5.00A*³)
	PG-1500 Controller	 IBM PC/AT[™] (PC DOS[™] Ver.3.1)
	RA75X Relocatable Assembler	

*1: Maintenance product

2: Not provided with IE-75001-R.

3: Ver.5.00/5.00A has a task swap function, but this function cannot be used with this software.

Remarks: For development tools from other companies, refer to 75X Series Selection Guide (IF-151).

★ APPENDIX C. RELATED DOCUMENTS

GENERAL NOTES ON CMOS DEVICES

① STATIC ELECTRICITY (ALL MOS DEVICES)

Exercise care so that MOS devices are not adversely influenced by static electricity while being handled.

The insulation of the gates of the MOS device may be destroyed by a strong static charge. Therefore, when transporting or storing the MOS device, use a conductive tray, magazine case, or conductive buffer materials, or the metal case NEC uses for packaging and shipment, and use grounding when assembling the MOS device system. Do not leave the MOS device on a plastic plate and do not touch the pins of the device.

Handle boards on which MOS devices are mounted similarly .

2 PROCESSING OF UNUSED PINS (CMOS DEVICES ONLY)

Fix the input level of CMOS devices.

Unlike bipolar or NMOS devices, if a CMOS device is operated with nothing connected to its input pin, intermediate level input may be generated due to noise, and an inrush current may flow through the device, causing the device to malfunction. Therefore, fix the input level of the device by using a pull-down or pull-up resistor. If there is a possibility that an unused pin serves as an output pin (whose timing is not specified), each pin should be connected to V_{DD} or GND through a resistor.

Refer to "Processing of Unused Pins" in the documents of each devices.

③ STATUS BEFORE INITIALIZATION (ALL MOS DEVICES)

The initial status of MOS devices is undefined upon power application.

Since the characteristics of an MOS device are determined by the quantity of injection at the molecular level, the initial status of the device is not controlled during the production process. The output status of pins, I/O setting, and register contents upon power application are not guaranteed. However, the items defined for reset operation and mode setting are subject to guarantee after the respective operations have been executed.

When using a device with a reset function, be sure to reset the device after power application.

[MEMO]

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.

The devices listed in this document are not suitable for uses in aerospace equipment, submarine cables, nuclear reactor control systems and life support systems. If customers intend to use NEC devices for above applications or they intend to use "Standard" quality grade NEC devices for the applications not intended by NEC, please contact our sales people in advance.

Application examples recommended by NEC Corporation

Standard:Computer, Office equipment, Communication equipment, Test and Measurement equipment,
Machine tools, Industrial robots, Audio and Visual equipment, Other consumer products, etc.Special:Automotive and Transportation equipment, Traffic control systems, Antidisaster systems,
Anticrime system, etc.

M4 92.6

MS-DOS is a trademark of Microsoft Corporation. PC DOS and PC/AT are trademarks of IBM Corporation.